Na₂ZrO₃ Stability under Reforming/Regeneration Cycles during the Steam Reforming of Ethanol with CO₂ Absorption

M. A. Escobedo Bretado¹, V. Collins Martínez², J. Salinas Gutiérrez², L. I Gracia Campos², R. H. Lara Castro¹, A. López Ortiz²*

 ¹ Facultad de Ciencias Químicas, Universidad Juárez del Estado de Durango, Av. Veterinaria s/n, Circuito Universitario, Durango, Dgo., México, 34120.
² Departamento de Materiales Nanoestructurados, Centro de Investigación en Materiales Avanzados, S.C., Miguel de Cervantes 120, Chihuahua, Chih., México, 31109.
*Tel: +52 614 4394815; e-mail: alejandro.lopez@cimav.edu.mx

ABSTRACT

In this work Na₂ZrO₃ and a Ni-Al₂O₃ catalyst were used to evaluate the hydrogen production by the steam reforming of ethanol in combination with CO₂ absorption. The Na₂ZrO₃ was synthesized by the solid state method with a Na₂CO₃/ZrO₂ = 1:1 molar ratio and calcined at 900 °C in air. A 25% W Ni-Al₂O₃ catalyst was synthesized by incipient impregnation and calcined at 900 °C in air. During reforming, operating conditions were: $H_2O/C_2H_5OH = 6:1$ molar ratio, T = 600 °C, SV = 414 h⁻¹, with a reactor loading of Ni-Al₂O₃/Na₂ZrO₃ = 0.2g/3.7g. Results of the X-ray absorbent confirmed the Na₂ZrO₃ crystalline phase. While, the catalyst shown NiO and Al₂O₃ phases with a surface area of 125 m²/g. TGA CO₂ absorption tests by Na₂ZrO₃ reached 84.3% of the theoretical absorption value. Ethanol steam reforming without absorbent reached a maximum concentration of 69.1% H₂ (dry basis). After reaction X-ray results shows Ni and Al₂O₃ phases, while maintaining its initial surface area. Regeneration of the absorbent was carried out by separating this from the catalyst followed by calcination in air at T = 900 ° C by 4 hours. For the following reaction cycle the regenerated absorbent was remixed with the catalyst and reloaded to the reactor for a new step of reforming completing a reforming-regeneration cycle (R-Reg). 10 R-Reg cycles were performed resulting an excellent thermal and chemical stability of the Na₂ZrO₃ absorbent. While, during the reforming step an average of 92% H₂ (dry basis), together with 8% CO₂, and CO free with an absorbent carbonation of 17.7% W. These observed values are close to the thermodynamic equilibrium and show excellent compatibility between the reforming and carbonation kinetics, and a great thermal stability of materials resulting in an attractive process for hydrogen production

Keywords: Absorption enhanced reforming; Na2ZrO3; Reforming/regeneration cycles

