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Influence of the spatial non-uniformity of the grating on the 
beam energy exchange of thick sillenite crystals. 
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Abstract: The influence of the variation of the phase and magnitude of the complex light 
modulation along sample thickness on the gain in a thick crystal of BTO in two-wave mixing was 
obtained.  
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1. Introduction 

When energy exchange takes place between two waves coupled by a photorefractive phase grating in a strong non-
linear regime the light modulation does not remain constant along wave propagation and there is a spatial non-
uniform grating along sample thickness. The undepleted approximation (uniform grating) is valid for short 
interaction lengths and or small coupling. However, for thick samples, the interaction length of the recording light 
beams inside the photorefractive material already is not small and therefore the approximation of uniform grating is 
not valid. 

Here we calculate the influence on the beams energy exchange of the variation, along sample thickness, of the 
magnitude and phase of the light modulation in a transmission thick sillenite grating (BTO) recorded with a dc 
applied field of E0 = 20 kV/cm, an initial light modulation of m0 = 0.9 when the grating vector is parallel to the face 

(001) and the light waves are propagating in the ( 101
_

) plane. Birefringence k0 and absorption of light (α=0.6 cm-1) 
are considered. 

 
2. Theoretical model  

We solved numerically the set of non-linear material rate differential equations to obtain the variation of the overall 
space charge field as a function of several initial light modulations considering an applied electric field [1]. Then we 
followed a tensor approach to express in terms of the complex amplitudes the four coupling equations (1a)-(1d) that 

describe the propagation and energy exchange of the components of the light waves )exp()()( RR rkizRzR Ψ+⋅−=
→ rr

 

and )exp()()( SS rkizSzS Ψ+⋅−=
→ rr

 along the sample thickness [2]. Describing the wave vectors Rk
→

 and Sk
→

 the 

direction of propagation of )(zR
→

and )(zS
→

 respectively and RΨ , and SΨ  representing the phases of the two light 

waves. In fact, )(zR
→

 and )(zS
→

 can be written as a function of their complex amplitudes RE, SE ,RM, and SM  along 

the direction Eû  perpendicular to the x-y plane and Mû  parallel to the same plane as follows:  

MMEE ûzRûzRzR )()()( +=
→

         MMEE ûzSûzSzS )()()( +=
→

; The incidence of the beams is on the  x-y plane. 
Neglecting the second derivate of the field and considering the paraxial approximation, the following set of 

equations for the grating wave vector KG ⎜⎜ [001] with the light waves propagating in the ( 101
_

) plane, is obtained 
[3]: 
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Here α is the absorption coefficient and ρ is the optical activity which is neglected in this work for simplicity. 

The constant κ0, is due to the variation of the magnitude of the change in the refractive index induced by the external 
applied field, E0: 
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n0 is the average refraction index in the sample, λ is the wave length of the recording monochromatic beams, θ is the 
incidence Bragg’s angle and r is the electro optic coefficient. Notice that κ0 is not a function of z. 

In our approach we take into account in the complex coupling factor )(1 zκ  of the two-wave mixing equations 
the phase shift φ(z) of the space charge field with regard to the light interference pattern as well as the phase ψm (z) 
of the light modulation m(z) determined from:  
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where E1(z) is the fundamental Fourier component of the space charge field. 
In terms of the complex amplitudes of light beams, the light modulation is described by 
 

 
))0()0()0()0()0()0()0()0((

)()()()(
2)( ****

MMEEMMEE

MMEE

SSSSRRRR
zRzSzRzS

zm
+++

+
=

∗∗

 (5) 

 
We solved the set of equations (1a)-(1d) in a self consistent way to take into account the variation with depth of 

the refraction index given by Δn1(z). We divided the sample in thin layers of thickness Δz in such a way that within 
each layer )(1 zκ   is practically constant. In this way, within each layer we have analytical solutions for the coupled 
equations (1a)-(1d) [4]. When a small change (larger than 0.1%) in this variable occurred, we chose a smaller 
interval and calculated the new corresponding set of values of constants for the corresponding interval Δz. We 
started evaluating the initial set of constants for the first layer at the surface of the sample by using )0(1 =zκ . 
Next, for the following layers, the values of the complex amplitudes of the beams at the end of each interval were 
used to evaluate m (z) and therefore a new value of κ1 at z where the following layer starts. 

In our calculations we used a grating with a spatial period Λ of 10μ, a light modulation at the surface of the 
sample (m0) of 0.9 and an applied field of 20 kV/cm, obtaining a coupling factor of κ1(0) = 4.79 cm-1. The value of 
absorption used for the BTO crystal was 0.6 cm-1, the rest of material parameters were taken as in Refs. [3,5]. We 
also considered that the two beams were linearly polarized and had a polarization angle φp, defined as the inclination 
angle of the electric field of light waves with respect to the plane of incidence at the surface of the sample, of π/2 
rad. 

From the complex amplitudes of light waves, obtained from the self consistent solutions of the set of equations 
(1a)-(1d) we calculate the intensities and phases of each wave and the corresponding light modulation m(z) as a 
function of z. We also obtained the gain coefficient G(z) defined as: 

 1
)0(
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)( −

=
=

zI
zI
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R

R  (6) 

Where IR(z) = ⎜R(z)⎜2 is the intensity of the reference light beam at specific sample thickness z, and IR(z=0) is 
the intensity of light beam at the surface of the sample. 
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3. Results and discussion 

In figure 1 we compare the variation of the phase of the light modulation along sample thickness of the uniform 
grating approximation (  α =0 and x α =0.6cm-1 ) with the non-uniform grating approximation (  α =0 and ∆ α 
=0.6cm-1). In figure 2 we show the corresponding gain associated to figure 1 for the uniform grating (■ α =0 and x α 
=0.6cm-1 ) and the non-uniform grating approximation (  α =0 and  ∆ α =0.6cm-1).  
For the uniform grating approximation the phase of the light modulation has an identical oscillatory behavior for 
both cases considered α =0 and α =0.6cm-1. Instead for the non-uniform grating calculations, in the case of no 
absorption α = 0 the phase of the light modulation increases monotonously along the sample thickness, while in the 
case of α =0.6cm-1 also it increases but tends to reach a saturation value. On the other hand, the gain coefficient of 
the recording beams in the case of uniform grating also shows an oscillatory behavior as the phase of the 
modulation, becoming attenuated by absorption. In contrast, the gain coefficient for the non uniform grating as can 
be seen in figure 2 increases until reaching a saturation value in the case of no absorption but calculations for α 
=0.6cm-1 show a maximum value of the gain coefficient at specific thickness z followed by a monotonously 
decrement along the sample thickness.  
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4. Conclusions and Acknowledgment 

In conclusion, the vector approach employed in this work to describe the propagation and energy exchange of the 
components of the recording light waves in the material predicts strong variations of the phase and the magnitude of 
the modulation along the thickness sample in the non uniform grating approximation. This variation of the complex 
light modulation modifies significantly the gain in the photorefractive recording process. 
We want to acknowledge partial financial support from Dirección General de Asuntos del Personal Académico from 
the Universidad Nacional Autónoma de México by the grant IN-116903. 
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Fig. 1 Variation of the phase of the light
modulation along sample thickness for the
uniform grating approximation without
absorption  α = 0 and x α= 0.6 cm-1, and for
the non uniform grating approximation ♦ α= 
0 and Δ α= 0.6 cm-1. 

Fig. 2 Gain coefficient G(z) along the sample 
thickness for the uniform grating 
approximation ■ α = 0 and x α= 0.6 cm-1, and 
for the non uniform grating approximation ♦
α= 0 and Δ α= 0.6 cm-1. 
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