Type of presentation: Poster

MS-1-P-3446 Structure and Morphology Study of Pure and Mixed ZnO and ZnO $_2$ Nanoparticles

Paraguay-Delgado F.², Roman E.¹, Gómez M. M.¹, Solís J. L.¹, Antunez-Flores W.²

¹Universidad Nacional de Ingeniería, Faculty of Science, Av. Túpac Amaru 210, Lima 25, Perú, ²Centro de Investigación en Materiales Avanzados S. C., CIMAV, Miguel de Cervantes 120, CP 31109 Chihuahua, Chih. México.

Email of the presenting author: francisco.paraguay@cimav.edu.mx

Synthesis of ZnO_2 nanoparticles was performed via a sol-gel technique assisted with UV irradiation. One gram of zinc acetate dehydrate, $Zn(CH_3COO)_2.2H_2O$, was dissolved under vigorous stirring in a mixture of 50 ml distilled water and 5 ml of 30% H_2O_2 . The resulting solution was then irradiated with a 300W Ultra-Vitalux lamp (Osram), positioned 10 cm above the solution, for 30 min at ambient temperature. This procedure resulted in the formation of a white zinc peroxide colloidal suspension. The ZnO_2 nanoparticles were precipitated by centrifugation. The precipitate was then washed using distilled water until a pH of 8 was reached. Finally the resultant white solid was dried at 80 °C for 12 h, similar to follow in the reference [1]. The resultant powder was annealed between 100 and 220°C for 1 h in an oven with air atmosphere. The morphology, structure and domain size of the nanoparticles were determined by X-ray diffraction, and scanning transmission electron microscopy. By X-ray diffraction, all patterns can be indexed to the zinc peroxide phase for samples prepared up to 120°C. For a sample prepared at 160°C we had a mixture of ZnO_2 and ZnO, while for particles treated at 220°C all the material was pure ZnO.

Micrographs shows STEM images for zinc oxide and zinc peroxide nanoparticles. Fig 1 shows rounded ZnO particles, with an average grain size of 18 ± 5 nm. The inset displays that the ZnO d-space was 2.8 Å. Fig 2 shows an image of ZnO and ZnO₂ mixture, in the inset figure can be appreciated rund conglomerated particles. There are two types of particles, the bigger ones belong to ZnO and the smaller ones belong to ZnO₂. The information of the atomic columns acquired by HAADF detector indicated that ZnO d-spaces were between 2.8 Å and 2.6 Å. This parameter must be connected to synthesis conditions of the material. In any case the average diameter size was 145 ± 55 nm.

Figures 3 and 4 belong to images of pure ZnO_2 particles acquired by HAADF and BF detectors respectively. At low magnification can be observed spherical shapes with broad size dispersion between 40 and 287 nm. The average diameter was 130 ± 64 nm. At higher magnification these conglomerates displays small grains (≈ 5 nm). Figure 1d confirmed that each small grain had d-space values which belong to ZnO_2 .

Using electron microscope techniques we have studied in detail the morphology and the structure of ZnO nanoparticles, ZnO_2 nanoparticles and a mixture of both. The ZnO_2 nanoparticle are of great interest, because they had interesting microbiological characteristics [2].

References

[1] R Colonia, J L Solís and M Gómez, Adv. Mat. Sci.: Nanotechnol 5 (2014) 015008 (4pp).
[2] R Colonia, V. Martinez, J. L. Solís and M. M.Gómez, Rev. Soc. Quim. Peru 79(2)2013 126 (10pp)

Acknowledgement: Thanks to P. Pisa and E. Torres for their technical help, at nanotech Cimav.

Fig. 1: STEM image by HAADF and BF images for ZnO particles, inset image show d space of ZnO.

Fig. 3: ZnO_2 particles conglomerate in a spherical shape, inset can be notice the nanoparticles.

Fig. 2: ZnO-ZnO2 particles, d-sapace belongs to ZnO.

Fig. 4: BF image showing d-spaces of ZnO₂.