TABLE OF CONTENTS

00017 Study Annealing Effects On The Properties Of Electrodeposited CdSe Thin Films .. 1
00018 Comparative Electrochemical Characterization Of Pt/C And Pt-Au/C Catalysts Synthesized By Surface Redox Reactions .. 2
00019 Design and manufacture of a PEMFC stack using Pd5Cu4Pt/C as cathodic electrocatalyst 3
00020 Platinum Reduction Study On Pt/C As Electro-Catalysts For PEMFC .. 4
00023 Effects on Nafion® 117 membrane using different types of strong acids in various concentrations 5
00025 Application of RuXMoYSeZ for Oxygen Reduction Reaction in Cathode and Two Anodic Material on the Performance of Two Single Chamber Microbial Fuel Cells ... 6
00027 Microwave Synthesis of Ru3Pd6Pt as Cathode in PEM Fuel Cells .. 7
00028 Biohydrogen Production through Solid Substrate Fermentation of Organic Municipal Wastes: a Multivariable Evaluation .. 8
00030 Transys Hybrid System Simulation for Home Electrifying .. 9
00031 Implementation Of The Bem Theory To The Rotor Of A Small Wind Turbine Under Wind Conditions At Istmo De Tehuantepec .. 10
00032 Remediation of a Soil Contaminated with Lindane in an Electrobiochemical Slurry Reactor 11
00033 Ionic conduction on ABPBI/ benzimidazole/H3PO4 proton exchange membranes 12
00034 Capacitance Improvement of Carbon Aerogels by the immobilization of Polyoxometalates Nanoparticles 13
00035 Capacitance improvement based on cell design .. 14
00036 Comparison of a Chemical and an Electrochemical Enrichment Methods of a Saline Inoculum for Microbial Fuel Cells ... 15
00039 Kinetic Study of Pt- H3PMo12O40 for methanol electro-oxidation .. 16
00040 Origin of oxygen reduction activity on tantalum oxide-based compounds as non-platinum cathodes for PEFC .. 17
00041 Starch Assisted Sol Gel Synthesis of Birnessite for an Electrochemical Capacitor Application 18
00042 Biohydrogen production in fluidized bed bioreactors: room temperature vs 35°C 19
00043 Study Of The Electrochemical Grown Of Polyaniline By Using Different Electrolitic System 20
00044 Electrocatalytic activity of Pt-Re/C catalysts for methanol electrooxidation .. 21
00045 Evaluation of pre-treatment on the first stage of an anaerobic digester for enhancing bio-hydrogen production and its associated Energy Balance ... 22
00047 Design, Manufacture And Evaluation Of A 250W PEM Fuel Cell Stack .. 23
00048 Electrochemical Activity of Pt/oxide-C Composites on the .. 24
00049 Performance improve of a PEM electrolyzer, decreasing the ohmic resistance because of manufacturing and assembly processes ... 25
00050 Performance Of Supercapacitors Based On Graphene Oxide And Mesoporous Carbon 26
00051 Oxygen reduction reaction on Pt/C electrocatalysts obtained ... 27
00052 Biohydrogen Production through Solid Substrate Fermentation of Organic Municipal Wastes: a Multivariable Evaluation .. 28
00053 Characterization of a five-face parallelepiped microbial fuel cell equipped with sandwich electrodes and analysis of microbial diversity of inócula .. 29
00054 Photodegradation of hydrocarbons using nanostructured TiO2/Cu powder .. 30
00055 Au@Pt core-shell type catalyst for hydrogen oxidation in presence of carbon monoxide 31
00056 Synthesis and properties of styrene ionic liquid copolymers for high temperature anhydrous fuel cells 32
00057 Methanol Electrooxidation on Au-Pd/C in Alkaline Media: The Dissolution of Palladium in the Bimetallic Alloy - A Case Scenario .. 33
00058 Electrocatalytic Properties of NiMo Nanoparticles for the Hydrogen Evolution Reaction 34
00059 Roadmap for hydrogen technology in urban public transport in the metropolitan area of Merida, Yucatan .. 35
00060 Electrochemical characterization of Ni-based alloys at the hydrogen evolution zone in alkaline media .. 36
00061 C-TiO2 and C-ZrO2 composite supports for Pt electrocatalyst to evaluate in ethanol anodic oxidation .. 37
00062 Design of bipolar plates for a PEM electrolysis cell .. 38
00063 Effect of Sb-Doped SnO2 Supports Heat Treatment on the Oxygen Evolution Reaction .. 39
00064 Stack fuel cell prototype used to power a LED system .. 40
00065 Coke Gasification As An Alternative To Produce Hydrogen For A New Petroleum Refinery .. 41
00066 Evaluation and comparative analysis of Pt-Mo/C catalysts synthesized by different methods for application as anodes in direct methanol fuel cells .. 42
00067 Design and development of a Direct Ethanol Fuel Cell (DEFC) stack .. 43
00068 ZnO Electrodeposition & Application in Dye-Sensitized Solar Cells ... 44
00069 Sustainable Hydrogen Production in Yucatan .. 45
00070 Hydrogen Storage in Metal Organic Framework .. 46
00071 Influence Of The Properties Of TiO2 Nanomaterials On The Performance Of Dye-Sensitized Solar Cells 47
00072 A Dye-Sensitized Brookite Solar Cell .. 48
00073 Use Of A Tryfunctional Crosslinking Agent In Styrene/Acrylic Acid Copolymers To Enhance Mechanical Properties For Their Use As Membranes In Fuel Cells .. 49
00074 ZnO nanorods functionalized with TiO2 nanoparticles for application in dye-sensitized solar cells .. 50
00075 Synthesis and Luminescence Properties of Sulfonated Poly-[Styrene-co-Acrylic Acid] ... 51
00076 DNA Gold Modified Electrodes for HPV Detection .. 52
00077 Synthesis and Characterization of Pyrochlore and Perovskite Potassium Tantalates for Water Splitting 53
00078 Photocatalytic Hydrogen Evolution from Pure Water Using a New Sm2GaTaO7 Advanced Compound 54
00079 Electrochemical And Capacitive Properties Of Polyamide Evaluated In H2SO4 And NaNO3 Systems .. 55
00080 Graphene Oxide For Application In Supercapacitors No- Faradaic ... 56
00081 Development of Polymeric Enzymatic Electrodes for Ethanol Oxidation ... 57
00082 Preparation and Study of Polymeric Catalysts for Electrolysis ... 58
00083 Design and Construction of a Demonstrative Hybrid System Consisting of a Solar Panel, a Stack of Regenerative PEM Fuel Cells and Supercapacitors .. 59
00084 Experimental and theoretical studies of Cu/Ni-base catalysts for H2 generation .. 60
00085 Synthesis of NaTaO3 by a new solvo-combustion method and its hydrogen production photoactivity 61
00086 Unsupported Pt-Ru-Ir And Pt-Ir As Bi-Functional Catalyst For Reduction Oxygen And Oxygen Evolution Reactions In Acid Media .. 62
00087 Nanostructured Ferrite as Photocatalysts for H2 Generation from Water Splitting and Sunlight .. 63

00088 Hydrogen Production by Steam Reforming of Ethanol over a Ru/Al2O3 Catalyst .. 64
00089 Hydrogen Storage in Nanocomposite Materials of Polyamide, Carbon Nanotubes and Titanium .. 65
00090 Development of a Low Power Backup System for Technology Demonstration .. 66
00091 Scooters electric motor characterization and the sizing of a PEMFC power plant required for its operation 67
00092 Development And Application Of Pt Black- Pt/IrO2 As Bifunctional Catalyst For URFC’s ... 68
00093 Design, Manufacture And Evaluation Of A 250W PEM Fuel Cell Stack ... 69
00094 Feasibility Study To Use Hydrogen As Alternate Source Of Energy In Mexico ... 70
00095 Microwave Assisted Polyol Synthesis of Nano-sized Pt and PtCr-based Electro catalysts on Oxygen Reduction Reaction for PEM Fuel Cells ... 71
00096 Life Cycle Assessment of Solar Selective Surfaces Produced by Continuous Electrochemical Process from Cradle to Grave .. 72
00097 Towards the understanding and controlling of the photo-deposition of metal nanoparticles on oxides 73
00098 Effect of the Selection of Material on the Electric Power Generation and Costs PEMFC Experimental Designs 74
Theoretical studies of Sulfonated Poly (ether-imide): A Promising Material for Proton Exchange Membranes in fuel cells .. 75
Fast synthesis of M@Pt (M=Ru, Pd, Fe3O4) core-shell nanostructures and their evaluation as anodes for the oxidation of ethanol ... 77
Synthesis of unsupported Pt-based electrocatalysts and evaluation of their catalytic activity for the ethylene glycol oxidation reaction ... 78
Integration of solar-hydrogen technologies for sustainable housing .. 79
Hydrogen adsorption in isoreticular MOF .. 80
Synthesis of Ag/Pt-Pd Core/Shell Nanoparticles and Their Electrocatalytic Properties towards the Oxygen Reduction Reaction .. 81
Effects on Nafion ® 117 membrane using different types of strong acids in various concentrations 82
C-TiO2 and C-ZrO2 composite supports for Pt electrocatalyst to evaluate in ethanol anodic oxidation 83
Design of bipolar plates for a PEM electrolysis cell .. 84
Desarrollo Y Aplicación De Membranas Hibridas Por El Proceso Sol – Gel Para El Enriquecimiento De Metano En Un Biodigestor Anaerobio .. 85
Study of the Ni/WOx-Hydrotalcite catalysts to produce hydrogen by ethanol steam reforming 86
Decentralized Energy Planning Using Multicriteria Methods .. 87
Synthesis and Characterization of Magnetic Barium Ferrite-Silica Nanocomposites 88
Electrical Transport Studies of the Solid Electrolyte system xAgI-(95-x)[2Ag2O-B2O3]-5TeO2, where 45 ≤x≤65 89
Structural and magnetic studies of undoped and strontium doped lanthanum manganite system 90
Bimetallc materials based in Ag for cathode/anode electrode in a glucose microfluidic fuel cell 91
New BLi clusters capable of storing molecular hydrogen .. 92
Electrochemical Synthesis of Au and Pd Electrodes for Glucose Oxidation ... 93
Design and development of a Direct Ethanol Fuel Cell (DEFC) stack .. 94
2nd Harmonic Voltammetry Electrochemical Technique For Palladium Synthesis Of Dendritic Structures 95
Hydrogen Storage in Metal Organic Framework .. 96
Hydrogen Releasing Examination During The Reaction Of Aluminum At Al5Fe2 Intermetallic Powders With Water ... 97
Evaluation of a ZrO2 composite membrane operating at High Temperature (100 °C) for Direct Methanol Fuel Cells. .. 98
Development of a Dynamic Hydrogen electrode coupled to a hydrogen proton exchange fuel cell 99
Synthesis of Pd/C and Pd/Pani for formic acid oxidation .. 100
Synthesis And Photoelectrochemical Characterization Of WO3 Nanomaterials .. 101
Theoretic-experimental study of Pd-based electrocatalyst for fuel cells .. 102
Tungsten Effect Over Co-hydrotalcite Catalysts to Produce Hydrogen from Bio-ethanol (Analysis of the catalyst structure) .. 103
Pt Nanoparticles Supported on Carbon Nanotubes for Direct Ethanol Fuel Cells (DEFC) Application 104
High Performance Electroactivity in Pt/MWCNT and Pt/NiMWCNT Electrocatalysts 105
Characterization of a fuel cell unitized regenerative stack based on IrO2-Pt/ATO as dual material 106
Synthesis of Au-based materials with electrocatalytic properties for the glucosa electro-oxidation reaction 107
Design and implementation of a hybrid power system (wind-solar-fuel cell) of 4kW ... 108
Biological production of CO2-free hydrogen by anaerobic microbial mixed microflora in an upflow anaerobic sludge blanket (UASB) reactor coupled with a gas purification device ... 109
Photocatalytic water splitting for hydrogen production from N-TiO2-X/Pt prepared by Nitrogen gas plasma (AC) method ... 110
Hydrogen Generation in a Microbial Electrolysis Cell (MEC) using two configurations: Catalyzed by Platinum and Biocathode .. 111
Progress on the PdP alloy deposition onto a gas diffusion layer for a PEMFC application 112
<table>
<thead>
<tr>
<th>Paper Number</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>00E55</td>
<td>ORR kinetics on carbon paper-supported PdP cathodes: electrochemical impedance spectroscopy and rotating disk electrode study</td>
<td>113</td>
</tr>
<tr>
<td>00E56</td>
<td>Hydrogen Production by Solar Energy in Tropical Conditions</td>
<td>114</td>
</tr>
<tr>
<td>00E57</td>
<td>Electrocatalytic activity of Pt-Re/C catalysts for methanol electrooxidation.</td>
<td>115</td>
</tr>
<tr>
<td>00E58</td>
<td>High Altitude Platforms (HAP's) powered by PEMFC's: a technological advantages review and analysis of their implementation in Quintana Roo, Mexico.</td>
<td>116</td>
</tr>
<tr>
<td>00E59</td>
<td>Production And Purification Of Hydrogen Coupled To A Photovoltaic System</td>
<td>117</td>
</tr>
<tr>
<td>00E60</td>
<td>Preparation and Characterization of Pt-Pd and Pt-CeOx Electro catalysts for the Oxygen Reduction Reaction in Absence and Presence of Metanol in Alkaline Medium</td>
<td>118</td>
</tr>
<tr>
<td>00E61</td>
<td>Thermodynamic Analysis of the Absorption Enhanced Autothermal Reforming of Ethanol</td>
<td>119</td>
</tr>
<tr>
<td>00E62</td>
<td>PREPARATION OF Coteta/MWCNT ORR ELECTROCatalYST</td>
<td>120</td>
</tr>
<tr>
<td>00E63</td>
<td>Absorption/Desorption Hydrogen Process In A Material Type Hidrotalcite</td>
<td>121</td>
</tr>
<tr>
<td>00E64</td>
<td>Platinum loading variation in MEAs to compare PEM Fuel Cell performance</td>
<td>122</td>
</tr>
<tr>
<td>00E65</td>
<td>Revisiting alkaline electrolysis: Challenges and opportunities for the production of hydrogen</td>
<td>123</td>
</tr>
<tr>
<td>00E66</td>
<td>Preparation and study on CoTETA/MWCNT catalyst as ORR electrocatalyst</td>
<td>124</td>
</tr>
<tr>
<td>00E67</td>
<td>Effect of carbon porosity on the electrochemical properties of carbon/polyaniline supercapacitor electrodes</td>
<td>125</td>
</tr>
<tr>
<td>00E68</td>
<td>Enhancement of oxygen reduction activity on carbon-supported Co-phthalocyanine modified with pyridine as nitrogen precursor in alkaline electrolyte.</td>
<td>126</td>
</tr>
<tr>
<td>00E69</td>
<td>Studies of electrochemical properties and active sites of carbon-supported nickel phthalocyanine (NiPc/C) catalysts for oxygen reduction reaction.</td>
<td>127</td>
</tr>
<tr>
<td>00E70</td>
<td>Carbon-supported copper phthalocyanine (CuPc/C) as novel cathode catalyst for polymer electrolyte membrane fuel cells --- Effect of Nafion ionomer as for alkaline electrolyte.</td>
<td>128</td>
</tr>
<tr>
<td>00E71</td>
<td>High catalytic performance of Pt/C for the ethanol electrooxidation using sonochemically-treated XC-72R carbon support.</td>
<td>129</td>
</tr>
<tr>
<td>00E72</td>
<td>Synthesis and evaluation of Pt-Sn/C and Pt/C nanomaterials for the ethanol oxidation reaction</td>
<td>130</td>
</tr>
<tr>
<td>00E73</td>
<td>Synthesis and Characterization of Pt-Au/C for Ethanol Tolerant ORR Electro catalyst</td>
<td>131</td>
</tr>
<tr>
<td>00E74</td>
<td>Method for Water Electrolysis in Acid Medium.</td>
<td>132</td>
</tr>
<tr>
<td>00E75</td>
<td>The Oxygen Reduction Reaction on Pt/TiOxNy Based Electrocatalyst for PEM Fuel Cell Applications</td>
<td>133</td>
</tr>
<tr>
<td>00E76</td>
<td>Correlation between the Physico-chemical Properties and the Oxygen Reduction Reaction electro catalytic activity in acid medium of Pd-Co Alloys synthesized by Ultrasonic Spray Method.</td>
<td>134</td>
</tr>
<tr>
<td>00E77</td>
<td>Electrochemical investigation of Pd-Co thin films binary alloy for the oxygen reduction reaction in acid medium.</td>
<td>135</td>
</tr>
</tbody>
</table>
Hydrogen Production by Steam Reforming of Ethanol over a Ru/Al₂O₃ Catalyst

A. López-Ortiz§, M. A. Escobedo-Bretado⁎, M. Meléndez-Zaragoza⁎, J. S. Salinas-Gutiérrez⁎, D. Aceves Olivas⁎, V. Collins-Martínez ⋆

⁎ Facultad de Ciencias Químicas, Universidad Juárez del Estado de Durango, Ave. Veterinaria s/n, Circuito Universitario, Durango 34120, México
§ Departamento de Materiales Nanoestruturados, Centro de Investigación en Materiales Avanzados, S. C. Miguel de Cervantes 120, Chihuahua, Chih. 31109, México,
* Tel: 614 439 4815, Fax 614 439 1129, mail: virginia.collins@cimav.edu.mx

ABSTRACT

The present work aims the evaluation of a ruthenium catalyst supported on alumina (Ru/Al₂O₃) in the reforming of ethanol for the production of hydrogen. The selection of a suitable synthesis method, support and appropriate reagents proportions, play a major role in the catalyst performance within this reaction. Catalyst was synthesized by the incipient impregnation method from a solution of Ruthenium (III) chloride mono-hydrated to get a loading of 10% W, and deposited on α-alumina as support. The catalyst was characterized by: X-ray diffraction (XRD), surface area (BET), scanning electron microscopy (SEM) and a thermogravimetric analysis (TGA). The evaluation of the catalyst was carried out using a bench-scale fixed bed reactor system for the reforming of ethanol and reaction product compositions followed by gas chromatography. Preliminary results indicate that catalyst selectivity was highly dependent on reaction temperature, steam to ethanol ratio and space velocity for the production of a high content hydrogen gas product accompanied with low carbon deposition on the catalyst surface

Keywords: Etanol-Reforming, Ru/Al₂O₃-Catalyst, Hydrogen Production
1. INTRODUCTION

Hydrogen is an important raw material for today chemical and petroleum industry and can be considered a convenient and clean energy carrier, because energy produced from this gas generates water vapor as the only byproduct [1, 2], also hydrogen can be used to produce electricity with high efficiency through fuel cells. Among the main \(H_2 \) production processes are: steam reforming and partial oxidation of hydrocarbons, coal gasification and water electrolysis [3]. Due to the difficulties of hydrogen storage, distribution and transportation “on board” hydrogen generation from liquid fuels has become a priority need. Furthermore, the steam reforming of liquid hydrocarbons is considered the most appropriate route because of its mild operating conditions. Among the liquid hydrocarbon fuels that have been studied methanol and ethanol are the most promising candidates. Even though, research efforts in hydrogen production from methanol reforming have been extensive, there exist some disadvantages related to this raw material such as: high toxicity and the fact that its production is based mainly on fossil fuels. In contrast, ethanol can be produced at large scale from biomass and offers several advantages such as natural availability along with safe handling and storage [3]. Additionally, ethanol has the potential to achieve a high \(H_2 \) yield because according to the ethanol steam reforming (ESR) reaction (1)

\[
C_2H_5OH + 3 H_2O \rightarrow 6 H_2 + 2 CO_2
\]

six mols of hydrogen can be produced per mol of ethanol fed. Therefore, due to all the above mentioned features, ethanol has become the best raw material candidate for hydrogen production through the steam reforming of liquid hydrocarbons.

Besides, an optimal fuel cell performance requires a compact, clean and powerful source of hydrogen. Recently, RuO\(_2\) nanoparticles were used as an efficient catalyst for oxidation reactions with good activity and selectivity [4, 5]. In that study it was found that Ru nanoparticles supported on carbon nanotubes (Ru \(\cdot \) xH\(_2\)O/CNT) showed excellent performance for aerobic oxidation of alcohols.

Therefore, it would be very attractive to find a suitable catalyst (non-susceptible to carbon formation) for the ethanol steam reforming reaction 1 to produce high purity hydrogen. Some expected advantages of this Ru based catalyst are in principle, that a smaller amount of CO would be formed as a byproduct, since reaction (1) is based in a complete oxidation of ethanol with steam. In contrast, the steam reforming of methane (SMS), produce a larger amount of CO because is based on the partial oxidation of methane.

\[
CH_4 + H_2O \rightarrow CO + 3 H_2
\]

followed by oxidation of CO through the water gas shift (WGS) reaction.
9th International Symposium on New Materials and Nano-Materials for Electrochemical Systems
XII International Congress of the Mexican Hydrogen Society
Merida, Mexico, 2012

\[\text{CO} + \text{H}_2\text{O} \rightarrow \text{CO}_2 + \text{H}_2 \]

Other potential advantages include: the production of a higher amount of hydrogen since six mols of H\(_2\) are produced per mol of ethanol in the ESR, while only 3 mols H\(_2\) are produced per mol of methane fed (SMR) and a lower reaction temperature of the ESR compared to the SMR, where potential energy savings are expected.

Therefore, the main objective of the present research is to synthesize, characterize and evaluate an alternate ethanol reforming catalyst to Ni/Al\(_2\)O\(_3\) non susceptible for carbon formation based on Ru supported on \(\alpha\)-Al\(_2\)O\(_3\) for the production of hydrogen through the ethanol steam reforming reaction.

1. **Experimental**

1.1 **Synthesis**

A 10\% W Ru-based reforming catalyst supported in \(\alpha\)-Al\(_2\)O\(_3\) was synthesized using the incipient impregnation technique. Precursors used were \(\alpha\)-Al\(_2\)O\(_3\), previously stabilized at 800°C for 4h, and a impregnating solution of Ruthenium (III) chloride mono-hydrated (J.T. Baker). After impregnation the catalyst was dried and calcined at 700°C for 4h.

1.2 **Characterization**

The crystalline structure was determined by X-ray diffraction (XRD) in a Phillips X'PertMPD with a Cu-\(K_{\alpha}\) radiation source (1.5406Å); from 10 to 80° 2\(\theta\) interval and using a 0.6° min\(^{-1}\) scanning step. BET surface area of the samples was determined by N\(_2\) physisorption in an Autosorb 1 (Quantachrome Inc), while morphology and elemental analysis was examined in a JEOL JSM-5800LV scanning electron microscope (SEM) and energy dispersive spectroscopy (EDS), respectively. Carbon content after reaction was determined through thermogravimetric analysis (TGA) using a TA Instruments Q500.

1.3 **Ethanol Reforming Evaluation**

The catalytic activity was evaluated in a stainless steel fixed-bed reactor (9.2 mm diameter) packed with a reforming catalyst (150g).

Before the reforming reaction evaluation tests a catalyst activation procedure was performed that consisted of a reduction with a stream of 20\% H\(_2\)/N\(_2\) for 2 h at 600°C. The catalytic evaluation was performed in a fixed-bed reaction system and this is presented in Figure 1.
Figure 1. The fixed-bed reaction system for the AEER evaluation tests

The feed to this system composed of a mixture of water/ethanol in a $\text{H}_2\text{O}/\text{EtOH} = 6/1$ molar ratio, which was fed for a 100DX-Teledyne Isco syringe pump at a rate of 0.0075 ml/min and evaporated by several heating tapes (preheating section) kept at 150° C. This mixture was then carried with a stream of N_2 (7.5ml/min) to be introduced to the reactor. The reactor temperature was 600° at atmospheric pressure. Reactor product gas concentration was monitored using a gas chromatograph (GC, Perkin Elmer Instruments Clarus 500) equipped with TCD and FID and a Porapack Q column. An empty reactor test was performed in order to determine the homogeneous contribution to the reforming reaction caused by the thermal decomposition of ethanol at 600°C. Results indicated the presence of methane, carbon monoxide, carbon dioxide and acetaldehyde as the main product species, which agree with those reported in the literature [1].

The ethanol reforming reaction performance was evaluated in terms of the conversion (X_i) and selectivity (S_i) of the reactant gases (i), which was calculated through a transient system using the following equations:

$$S_{H_2} = \frac{F_{H_2,\text{out}}}{3(F_{\text{EtOH in}} - F_{\text{EtOH out}}) + (F_{\text{H}_2\text{O in}} - F_{\text{H}_2\text{O out}})} \times 100$$

(4)

$$S_i = \frac{c_iF_{\text{out}}}{2(F_{\text{EtOH in}} - F_{\text{EtOH out}})} \times 100$$

(5)

$$X_{\text{EtOH}} = \frac{(F_{\text{EtOH in}} - F_{\text{EtOH out}})}{F_{\text{EtOH in}}} \times 100$$

(6)
where \(c_i \) is the number of carbon atoms of \(i \) and \(F_i \) is the molar flowrate of the gas \(i \) at the entrance (in) and at the exit of the reactor (out) [2, 5].

2. Results and discussion

2.1 BET Surface Area

Figure BET surface area results from the support, catalyst and CO\(_2\) absorbents are presented in Table 1.

<table>
<thead>
<tr>
<th>Material</th>
<th>Description</th>
<th>BET Surface Area (m(^2)/g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>α-Al(_2)O(_3)</td>
<td>Al(_2)O(_3)</td>
<td>205</td>
</tr>
<tr>
<td>RuAL</td>
<td>10 %wt Ru/Al(_2)O(_3)</td>
<td>175</td>
</tr>
</tbody>
</table>

The decrease in surface area observed for the catalyst (RuAL) from 175 m\(^2\)/g with respect to the support (α-Al\(_2\)O\(_3\), 205 m\(^2\)/g) can be explained in terms of the combined effect of the impregnating metal obstructing certain amount of pores and to an increase of the particle size of the material caused to a prolonged exposure to the calcination temperature (700°C).

2.2 X-Ray Diffraction Results (XRD)

XRD analysis was performed before reforming reaction evaluation for the catalyst to determine its crystalline structure present the RuAl sample. Figure 2 shows the diffraction pattern of the catalyst (RuAL) calcined at 700°C.
In this Figure it can be observed that the corresponding signals for α-Al$_2$O$_3$ ($2\theta = 36^\circ$, 40°, 45°, 60° and 66°, JCPDS 00-016-0394) and RuO$_2$ ($2\theta = 37^\circ$, 43°, 63°, 75°, and 78°, JCPDS 21-1172) crystalline structures are present in the RuAL sample. It is important to note that the active phase of the catalyst (Ru) appears as RuO$_2$ because of the air atmosphere used during the calcination of this sample.

2.3 Scanning Electron Microscopy (SEM)

SEM images obtained for sample RuAL (catalyst) before and after reaction are presented in Figure 3 (a and b, respectively).

![SEM images of RuAL (catalyst) before (a) and after reaction (b).](image)

Morphology of the synthesized RuAL catalyst before reaction (Figure 4a) presented non-porous plain particles with sizes in the range from 5-30 µm, while this catalyst after reaction (Figure 4b) shows an increase in the amount of small particles accompanied with a rough surface, these two features can be attributed to the combined exposure of this material to high temperature and water vapor environment. With the aid of the EDS technique the Ru loading within the catalyst was estimated to be approximately of 10%W Ni, thus confirming that this material contains the desired active metal content.

2.4 Evaluation of the H_2 production through Ethanol Reforming Reaction

The activities for the catalyst and for the catalyst/absorbent mixtures were evaluated towards the hydrogen production according to ethanol reforming reaction in a fixed bed reaction system. According to experimental results, 100% ethanol conversion was reached for all tests. A summary of the reaction evaluation tests is presented in Table 2.

<table>
<thead>
<tr>
<th>Material</th>
<th>$X_{C_2H_5OH}$ (%)</th>
<th>S_{CH_4} (%)</th>
<th>S_{CO} (%)</th>
<th>S_{CO_2} (%)</th>
<th>S_{H_2} (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RuAL</td>
<td>100</td>
<td>21</td>
<td>34</td>
<td>11</td>
<td>85</td>
</tr>
</tbody>
</table>
Results from Table 2 indicate that hydrogen selectivity for RuAL was 85% and this accompanied with a significant decrease in the generation of undesirable byproducts such as CH₄ and CO, which presented selectivities of 21 and 34%, respectively. Some authors [10] have reported that Al₂O₃ have presented catalytic properties when it is used as a catalyst support, particularly in reactions such as the CO oxidation (equation 9) and the methane reforming (equation 7).

\[
CH_4 + 2H_2O \rightarrow 4H_2 + CO_2 \\
CO + H_2O \rightarrow H_2 + CO_2
\]

Therefore, the behavior exhibited by sample RuAL that presented a low CH₄ selectivity can be explained through the above reaction scheme: when the reforming reaction takes place this causes an increase of the hydrogen content and lowering the CH₄ concentration in the product gas through reaction (8).

3. Conclusions

Catalyst (10% Ru/Al₂O₃) was successfully synthesized to produce relative high purity hydrogen through the ethanol reforming reaction scheme. The synthesized Ru/Al₂O₃ catalyst presented a high BET surface area (175 m²/g) and ethanol conversions of 100% and a hydrogen selectivity of 85%.

Acknowledgements

The authors gratefully acknowledge M Sc. Enrique Torres and Eng. Karla Campos, for their support during the execution of the present research. The authors desire to especially acknowledge to the National Nanotechnology Laboratory at CIMAV.

REFERENCES

