## International Congress on Applictions

 of Nanotechnology6th Annual Meeting of the Nanoscience and
Micro-Nanotechnology Network of the Instituto Politécnico Nacional


## General Program

September 29th and 30th, October lst and 2nd, at the Instituto Politécnico Nacional, Mexico City


# Effect of particle size in the reaction rate of sodium silicate used in the geopolymer production 

A. Tejeda-Ochoa, O.A. Herrera-Sánchez, E. Torres-Moye, J.E. Ledezma-Sillas, J.M. Herrera-Ramírez

Centro de Investigación en Materiales Avanzados (CIMAV), Laboratorio Nacional de Nanotecnología, Chihuahua, Chih., 31109, México
Email: martin.herrera@cimav.edu.mx

## Keywords: Sodium silicate, particle size

Silica is one of the most abundant oxide materials in the earth's crust ( $12 \%$ ) and occurs commonly in nature as sandstone, silica sand or quartzite [1]. Aqueous silicate solutions are important in biology, geology and numerous technical processes including for example the manufacturing of sols, gels and zeolites [2]. Sodium silicate is also used as an activator for geopolymer cement synthesis [3-5].

Geopolymers seems like a promising application in the cement industry as an alternative binder to Portland cement. The cement production worldwide is responsible for $5-7 \%$ of anthropogenic $\mathrm{CO}_{2}$ emissions; the geopolymer technology could reduce such emissions from 25 to $45 \%$ [3].

In a reaction, particle size plays an important role, being the most significant factor determining the reaction rate. Surface area increases very rapidly as the particle diameter decreases. The efficiency of the activator is also increased with finer particle size, because activation involves chemical reaction between the activator and the particle surface [6].

In this work, sodium silicate $\left(\mathrm{Na}_{2} \mathrm{SiO}_{3}\right)$ was obtained by chemically reacting soda with silicon dioxide $\left(\mathrm{SiO}_{2}\right)$ having different particle size. Before the reaction, the as-received silicon dioxide was sieved in order to determine its initial size; subsequently it was reduced using a SPEX 8000M mixer/mill under an air atmosphere for different milling times. A CLLAS1180 equipment was used to determine the particle size of the milled powders. The as-received sample as well as the milled powders were made to react with sodium hydroxide $57 \% \mathrm{w} / \mathrm{w}$; the resulting products were made to dry in oven for further analysis.

The optical micrograph in figure 1 shows silicon dioxide before milling. Its mesh distribution is presented in figure 2; as can be seen, the $70 \%$ is retained in mesh $60(250 \mu \mathrm{~m})$. Table 1 displays the study of particle size distribution after the mechanical milling process; the best size/time rate was at 5 minutes. In figure 3 the average size of the milled powders is shown, in which this milling time corresponds approximately to $10 \mu \mathrm{~m}$. A high variation in particle size and morphology of 5 -minute sample is shown in figure 4 ; it is worth mentioning that particles measured with the CILAS equipment correspond to a sub-micrometric particle clusters. Figures 5 presents infra-red spectra of the products obtained from asreceived $\mathrm{SiO}_{2}$ (A), milled $\mathrm{SiO}_{2}$ (B), and a commercial sodium silicate (C). The presence of sodium carbonate $\left(\mathrm{Na}_{2} \mathrm{CO}_{3}\right)$ was detected in all samples. However, sample A presents a higher $\mathrm{Na}_{2} \mathrm{CO}_{3} / \mathrm{Na}_{2} \mathrm{SiO}_{3}$ absorbance band rate compared with sample B, which can suggest a higher reaction rate in the last one due to the higher particle surface area. XRD patterns of samples A and B are displayed in figure 6 , where both phases were detected; furthermore, the reflection intensities evidence that sample A contains a higher quantity of $\mathrm{Na}_{2} \mathrm{CO}_{3}$
[1] M. Tohoué, J. Soro, J. L. Gelet, S. Rossignol, Journal of Non-Crystalline Solids, Volume 358, Issue 3, (2012) 492-501.
[2] I. Halasz, M. Agarwal, R. Li, N. Miller, Microporous and Mesoporous Materials, Volume 135, Issues 1-3, (2010) 74-81.
[3] J. L. Provis, Geopolymers-Structure, Processing, Properties and Industrial Applications (Woodhead Publishing, Australia, 2009).
[4] M. Rowles, B. O'Connor, Journal of Materials Chemistry 13(5): (2003) 1161-1165.
[5] J. Davidovitis, Geopolymer Chemistry and Applications (Second Edition France, 2008),
[6] S. J. Dick, Rubber Technology - Compounding and Testing for Performance (Hanser Publishers, second edition, 2009).


Figure 1. As-received silicon dioxide.


Figure 3. Average silicon dioxide particle size versus milling time.


Figure 5. FTIR spectrum of sodium silicate


Figure 2. Mesh distribution of silicon dioxide.


Figure 4. SEM micrograph of silicon dioxide after 5 minutes of milling.


Figure 6. X-ray diffraction of the products.

Table 1. Diameter dispersion at different milling times

| Milling time (minutes) | Diameter $(\mu \mathrm{m})$ at $10 \%$ | Diameter $(\mu \mathrm{m})$ at $50 \%$ | Diameter $(\mu \mathrm{m})$ at $90 \%$ |
| :---: | :---: | :---: | :---: |
| 1 | $3.52 \pm 0.10$ | $35.53 \pm 0.46$ | $157.32 \pm 1.30$ |
| 2 | $2.21 \pm 0.01$ | $15.54 \pm 0.05$ | $59.41 \pm 0.25$ |
| 5 | $1.06 \pm 0.09$ | $5.53 \pm 0.24$ | $27.68 \pm 0.96$ |
| 10 | $0.98 \pm 0.01$ | $4.35 \pm 0.13$ | $21.52 \pm 0.74$ |
| 30 | $0.99 \pm 0.01$ | $4.84 \pm 0.18$ | $23.00 \pm 0.70$ |
| 120 | $1.05 \pm 0.21$ | $6.96 \pm 0.41$ | $31.71 \pm 2.15$ |

