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Abstract 
 
Waspaloy is a superalloy used to manufacture some aeronautical parts subjected to high 
temperatures and stresses. During thermo-mechanical processing cracks are generated, causing  
some parts to be rejected. In order to determine the causes of these cracks, this alloy was 
characterized using techniques such as chemical analysis, optical microscopy, scanning electron 
microscopy, and EDX analysis. Heterogeneous grain sizes in the microstructure cause a non- 
uniform strain distribution in these parts, creating cracks in zones with different grain sizes. 
 

Introduction 
 
Nickel-base superalloys are important materials for high-temperature service applications. The 
manufacture of components from these materials is typically based on solidification or powder-
metallurgy processes [1]. Solidification techniques comprise either the direct casting of parts or 
the casting of ingots which subsequently undergo a series of thermo-mechanical-processing steps 
to refine the microstructure. During solidification, microsegregation is usually unavoidable. The 
primary solidification product is a disordered nickel solid solution with an fcc crystal structure 
(γ). In many alloys, the material which solidifies last is a mixture of γ and an ordered fcc phase 
(γ´). In prototypical nickel-base superalloys, the γ´-phase is Ni3
 

(Al,Ti) [2-3]. 

Waspaloy is a superalloy that is used in demanding high-temperature environments in which 
good creep and fatigue resistance are required. One of the most common applications of 
Waspaloy is for turbine engine rings. To ensure the required mechanical properties, the rings are 
usually forged and heat treated (Figure 1). Two distinct types of microstructures are usually 
found to be attractive for such applications: a) A microstructure with a grain size of ASTM 10 to 
14 for tensile strength, ductility, and resistance to crack nucleation in low-cycle fatigue;  or b) A 
microstructure with a grain size of ASTM 4 to 8 required for creep strength and resistance to 
crack propagation [4]. Because it is impossible to refine the grain size through heat treatment, a 
skillfully designed forging process is crucial for the control of the grain size and, hence the 
properties of the forged ring [5-6]. 
 

T.T. Chen Honorary Symposium on Hydrometallurgy, Electrometallurgy and Materials Characterization 
Edited by: Shijie Wang, John E. Dutrizac, Michael L. Free, James Y. Hwang, and Daniel Kim 

TMS (The Minerals, Metals & Materials Society), 2012 
 

 

 

 
 

641



To obtain optimum properties, γ´-strengthened superalloys must be homogenized following 
casting (or prior to hot working in ingot-metallurgy approaches) at temperatures between the γ´-
solvus and the solidus. At these temperatures, the γ´-phase dissolves relatively quickly in the γ 
matrix, but substantial time (usually many hours) is required to obtain a uniform distribution of 
alloying elements via diffusion processes. 
 
The objective of the present work is the metallurgical characterization of Waspaloy including its 
chemical analysis, and its characterization by optical microscopy, scanning electron microscopy 
and EDX analysis, in order to determine if the as cast ingot shows a heterogeneous 
microstructure and variations in chemical composition (segregation), grain size and hardness, 
from the external surface to the center of the Waspaloy ingot. 
 

 
 

 
 
 
 
 
 
 
 

 
 

Figure 1. Waspaloy forged rings. 
 

Experimental Procedures 
 

Metallurgical characterization of the samples consisted of: chemical composition determination 
by ICP analysis, microstructure determination by optical and scanning electron microscopy and 
EDX, mean grain size measurement by image analysis, and Rockwell C hardness measurements. 
The material used in the present work was a 304.8 mm diameter hot-rolled bar of Waspaloy. It 
had a measured chemical composition showed in Table I. 
 

Table I. Chemical composition of the Waspaloy ingot. 
 

 C Mn Si S P Cr Ni 
Nominal 0.03-0.10 0.0-0.10 0.0-0.15 0.0-0.015 0.0-0.015 18-21 Bal. 

Measured 0.036 0.02 0.03 0.003 0.004 19.61 Bal. 
 

 Co Fe Mo Ti Al B Zr 
Nominal 12-15 0-2.0 3.5-5.0 2.75-3.25 1.2-1.6 .003-0.010 0.02-0.08 

Measured 13.24 0.9 4.19 3.06 1.36 0.007 0.06 
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The microstructure of the as-received bar was examined in six representative locations, one at 
the outer diameter, 4 in the mid-radius, and one at the center. Figure 2 shows the sites where the 
samples were obtained from the Waspaloy ingot. 
 
The samples were prepared for the purpose of obtaining optical micrographs to show the grain 
size, grain morphology, grain distribution, and second phases of the matrix. Figure 3 shows the 
micrographs obtained from the six samples, from the external diameter to the center. 
 
The grain size was measured by optical microscopy and image analysis, in accordance with 
ASTM Standard E-112. Table II and Figure 4 show the obtained results of grain size for samples 
M1 to M6. 
 
Rockwell “C” hardness was measured on the external surface of the 6 samples. Table III and 
Figure 5 shows the hardness profile obtained from the outer surface (M1), to the center of the 
ingot (M6). 
 
 
 

 
 
 
 
 
 
 
 
 

 
 

Figure 2.  Location of the six samples obtained from the Waspaloy ingot. 
 

 
 

Table II. Average grain area and ASTM grain size values of samples 
 
 
 
 
 
 
 
 
 
 

Sample # 1 2 3 

Average 
grain area 

(µm2) 
ASTM 

Grain size 
M1 1030.97 1647.51 1754.76 1477.74667 6.5 
M2 1642.5 1681.36 2373.29 1899.05 65.-6.0 
M3 2862 2084.38 3097.69 2681.35 6.0-5.5 
M4 3302.5 3354.12 3456.6 3371.07333 5.5-5.0 
M5 5323.6 5757.84 5326.56 5469.33333 5.0-4.5 
M6 7000 7024.8 7839.93 7288.24333 4.5-4.0 
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    Sample 1  ingot outer surface         Sample 2 

 
 
 
 
 
 
 
 
 
 
 

    Sample 3             Sample 4 
 

 
 
 
 
 
 
 
 
 
              

                 Sample 5                                                   Sample 6  ingot center 
 

Figure 3. Microstructures of the ingot, from the outer surface (Sample-1) to the ingot 
center (Sample-6).  
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Figure 4. Average grain area and ASTM mean grain size. 
 
 
 

 
Table III. Average Rockwell  C hardness on the Waspaloy ingot samples 

Sample M1 M2 M3 M4 M5 M6 
Rockwell “C” 

hardness 
37 30.7 30 27.5 28 23 

 36 32 29.8 26.5 26.2 24.5 
 36 31.8 29 26.5 25 25 
 35 32 29.4 25.5 25.8 25 
 35 32 28.8 27.0 25.0 24 
 35 31.5 28 25.3 25.0 25 
 35 31 27 26 26.0 25 
 34 31 27.3 25.5 24.8 25.5 
 34 29 26 26 28.0 25 

Mean value 35.22 31.22 28.36 26.2 25.97 24.66 
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Figure 5. Average Rockwell C hardness measured on the Waspaloy ingot samples. 
 
 
The microstructure was determined by scanning electron microscopy and EDX, identifying the 
phases that were present in the matrix, such as blocky carbides located inside the grains, and tiny 
carbides located on the grain boundaries.  Figure 6 shows the microstructures of the six samples, 
from the outer surface to the center of the ingot. 
 
EDX analyses were performed in order to identify the carbides that are present in the 
microstructure of Waspaloy ingot. Grain boundary carbides contain carbon, molybdenum, 
titanium and chromium. Coarse carbides contain carbon, titanium and molybdenum, as shown in 
Table IV. 
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         Sample M1     Sample M2 
 
 
 
 
 
 
 
 
 
 
 
         Sample M3     Sample M4 
 
 
 
 
 
 
 
 
 
 
 
           Sample M5     Sample M6 
 
Figure 6. Scanning electron micrographs of the six samples obtained from the Waspaloy ingot, 
from outer surface (M1) to the ingot center (M6), showing coarse carbides of Mo and Ti, and 
carbides located on the grain boundaries. 
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Table IV. Elements detected in coarse carbides, grain boundary carbides and matrix 

Sample C Al Mo Ti Cr Fe Co Ni 
M1 Coarse 

carbides 
13.46 2.27 6.21 3.35 18.25 1.15 11.10 44.21 

M2 Coarse 
carbides 

23.50 -- 21.04 51.17 1.62 -- -- 2.66 

M3 Coarse 
carbides 

6.59 -- -- 93.41 -- -- -- -- 

M4 Coarse 
carbides 

19.17 -- 6.24 74.60 -- -- -- -- 

M5 Coarse 
carbides 

7.56 -- -- 92.44 -- -- -- -- 

M6 Coarse 
carbides 

19.33 -- 9.94 60.79 2.62 -- 2.01 5.31 

M1 grain boundary 
carbides 

14.82 1.03 4.60 2.55 19.91 1.23 11.94 43.91 

M2 grain boundary 
carbides 

24.85 -- 17.04 36.63 5.96 -- 3.22 12.30 

M3 grain boundary 
carbides 

26.69 0.43 18.75 37.23 4.27 0.54 2.56 9.53 

M4 grain boundary 
carbides 

23.82 -- 18.90 45.26 3.20 -- 2.19 6.64 

M5 grain boundary 
carbides 

17.63 0.66 14.24 24.52 10.58 1.17 6.59 24.61 

M6 grain boundary 
carbides 

22.26 0.57 16.96 35.78 5.62 1.15 3.93 13.72 

M1 matrix 3.32 1.27 4.40 3.01 18.17 1.35 13.54 54.96 
M2 matrix 3.34 1.04 4.50 2.72 18.61 1.39 13.53 54.89 
M3 matrix 3.85 1.30 4.40 3.05 18.32 1.27 13.54 54.28 
M4 matrix 3.93 1.21 4.54 2.59 18.35 1.28 13.76 54.35 
M5 matrix 3.05 1.34 4.42 2.76 19.18 1.46 13.29 54.50 
M6 matrix 9.52 1.28 3.58 2.65 17.14 1.23 12.99 51.61 

 
 
 

Results and Discussion 
 
Chemical Composition 
 
The chemical composition of the Waspaloy ingot meets the ranges specified in nominal 
composition, and it is within the range specified in Table I. 

 

There are no significant variations in 
the chemical composition  among the six analyzed samples, as shown in Table IV. 
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Microstructure 

The grain size on the external surface of the Waspaloy ingot is smaller than the grain size at the 
center of the ingot, as shown in Table II and Figures 3 and 4. This variation in grain size is due to 
different cooling rates on the external surface and the center of the Waspaloy ingot. The center of 
the ingot has a lower cooling rate than that of the external surface. 
 
The microstructure of Waspaloy constitutes of a nickel matrix (γ), a γ′ phase as fine precipitates, 
and a minor amount of carbide grains which occur at the grain boundaries and in the nickel 
matrix [2].  Figure 6 shows the different carbide grains located on the grain boundaries and 
inside the nickel matrix; these carbide grains were analyzed by scanning electron microscopy 
and EDX to determine their compositions. Table 4 shows the detected elements in each type of 
carbide; the blocky carbides are composed principally of titanium (92-93 wt.%) and in some 
cases molybdenum (6-21 wt.%), titanium (51-74 wt.%) and chromium (1-18 wt.%).  Carbides 
located at the grain boundaries contain titanium (24-45 wt.%), molybdenum (4-18 wt.%) and 
chromium (3-19 wt.%). 
 

 
Hardness 

The Rockwell “C” hardness of the sample located on the external surface (35 HRC) of the ingot 
is higher than the hardness of sample located at the center (24 HRC), as shown in Table III and 
Figure 5. 
 
Variations of microstructure, such as grain size and the phases present, may cause a non-uniform 
strain distribution on forged rings, causing cracks in zones of different grain size, specially when 
the geometry of the ring is complicated with zones of different thicknesses. 

 
Conclusions 

 
• There is no significant variation in the chemical composition among the six samples of  

Waspaloy ingot analyzed. 
• The microstructure shows variations in grain size from the external surface to the center 

of the ingot; the mean grain size on the external surface is smaller than that of the ingot 
center. The grain size distribution is not homogeneous within the same sample analyzed.  

• Rockwell “C” hardness is lower in the center of the ingot than that of the external 
surface. 
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