ZnO RODS SYNTHESIZED BY AQUEOUS CHEMICAL GROWTH

V. Corral-Flores^{1,a}, J.C. Valdivia-Martínez^{1,2,b}, M.L. Garcia-Guaderrama^{3,c}, E. Torres-

Moye^{4,d}

¹Centro de Investigación en Química Aplicada, Blvd. Enrique Reyna 140, CP 25294, Saltillo, México. ²Instituto Tecnológico de Durango, Blvd. Felipe Pescador 1830 Ote. CP 34080, Durango, México.

³Universidad de Guadalajara, Av. Juárez 976, Col. Centro, C.P. 44100, Guadalajara, México

⁴Centro de Investigación en Materiales Avanzados, Miguel de Cervantes 120, CP 31109 ^avcorral@ciqa.mx, ^bcevalmart_18@hotmail.com, ^cmgarciaguaderrama@dip.udg.mx, ^denrique.torres@cimav.edu.mx

Keywords: Chemical Growth, Nanomaterials, Zinc Oxide.

Zinc oxide rods were synthesized by aqueous chemical growth on different substrates, e.g. plane glass, ITO-coated glass substrates, stainless steel and platinum-coated silicon wafers. The effect of pressure was studied on open and closed reaction vessels at 90°C for six hours on ITO-coated glass substrates. Closed reaction gave rise to conic shaped rods with average diameter of $0.61 \pm 0.21 \,\mu\text{m}$, while more homogeneous rods of $0.91 \pm 0.17 \,\mu\text{m}$ were grown at open conditions. Rod length increased from 3.00 ± 0.47 to 3.67 ± 0.92 for close and open conditions respectively. As for the effect of reaction time, a sample was grown for 20 hours at closed conditions. Ave. diameter was not affected significantly, while length increased up to $7.30 \pm 0.85 \,\mu\text{m}$. Pt-coated silicon and stainless steel substrates promoted the formation of ZnO rods with a flower-like morphology, with similar dimensions than those grown over glass. In all cases, the hexagonal phase was verified by grazing incidence X- ray diffraction.