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Abstract 

 
The practical experience with the new Castolin Eutectic CJK5 
High Velocity Oxy Fuel thermal spray unit has grown since its 
successful launch in 2011. It has many design features that 
simplify the user interface and servicing, but maintaining 
outstanding coating quality. The technical and practical 
features are described with detailed microstructural 
characterization of the resulting carbide based coatings using 
an established powder composition from several powder 
sources. 
  
With the recent development of a state-of-the-art metal 
powder manufacturing plant in Europe, highest quality 
“satellite-free” metal powders can be manufactured. New self-
fluxing chemistries have been developed that are also low in 
Nickel and are designed to have good wear resistant 
properties. With the growing practical experience and 
parameter optimization, several innovative powders and 
coatings have been developed and are presented. 
Microstructural and mechanical properties and their 
relationship to processing parameters are presented. 
 

Introduction 
 
Since the launch of the TAFA JP5000 the High Pressure 
oxygen/kerosene HVOF system has grown in popularity and 
became an established technology in the thermal spray 
industry (Ref 1) for delivering high quality coatings and a 
reasonable operating cost. Over the years, a few other related 
systems have entered the market (Ref 2). These range from 
entry level units (which have expanded the market but are 
limited on quality and reproducibility) or higher end units with 
more focus on sophisticated control for OEM and aero 
applications. The later models have traded size and complexity 
for reproducibility, reliability and monitoring. However, there 
is a market demand for a high quality kerosene HVOF system, 
which has the advantages of portability, improved ease of use, 
lower operating costs (deposition efficiency, capital costs, 
reliability, reproducibility, consumables, etc.). HVOF 
portability has long been an important requirement and units 

have been launched on the market (Ref 3). The newly 
launched Castolin Eutectic CJK5 unit meets these market 
demands and this publication will present the latest results of 
development work with the unit for a range of materials.  
 
In the end, it is the coating quality which is the important 
product resulting from the HVOF unit, optimized powder and 
optimized spray parameters. This paper will highlight the 
sensitivity of the coating characteristics to powder source, 
powder type and spray parameters.  
 
In the field of HVOF technology, several popular coatings 
have evolved, for example in the area of hard chrome 
replacement (Ref 4, 5) and these will be tested/optimized to 
establish the quality of CJK5 in delivering equivalent or better 
quality than the current technology. 
 
In addition to the established HVOF powders and coatings, 
there is a constant demand to develop new coatings with 
improved performance that also meet the changing 
commercial and environmental needs. Two such needs that 
have developed are to reduce the amount of nickel that is used 
in certain alloys (for cost, environmental and health issues), 
and also to develop alternative alloys that rely less on high 
carbides content (WC, CrC) to give good coating wear 
properties. One option is to use metallic-based self-fluxing 
alloys which are available most commonly with Ni-Cr-B-Si 
compositions (Ref 6) and have a hardness range typically 
between 35-60 HRC. There is a long tradition of successful 
applications of self-fluxing alloys in tough wear and corrosion 
environments, including boiler coating (Ref 7), oil, etc. 
applied and fused with a variety of technologies. Corrosion 
resistance of these alloys is particularly good due to the high 
nickel, chrome and closed porosity (Ref 8). Recently, iron-
based self-fluxing alloys have been developed but are not 
widely known or used in the HVOF industry. Several 
compositions of self-fluxing alloys were manufactured in a 
new powder production plant using water-water and dry gas 
atomization. The latter has an advanced system to produce 
satellite-free particles. 
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Table 2: Fixed test conditions in PART A spray trials 
 

Powder WC/10Co/4Cr 
Robot movement Traverse: 300 mm/s Pitch: 5 mm 
Substrate S235JR (300 x 200 x 5 mm) 
Spray Time 1.2 mins 
Powder Feed 80 g/min 

 
Powder Samples 
All of the WC/10Co/4Cr powders that were sprayed were 
purchased from established manufacturers and suppliers of 
tungsten carbide HVOF powders. 
 
The metallic powders sprayed were manufactured at Castolin 
Eutectic Ireland Limited, in Dublin, Ireland which possesses a 
state-of-the-art gas-gas powder atomization tower, 
incorporating a novel design that can produce “satellite free” 
metallic powders. These have better flow parameters, a lower 
specific surface area and have been shown to give better 
quality coatings and deposition characteristics over 
conventional metal powders. Scanning Electron Microscope 
(SEM) images of the powders are given in Figure 3, to show 
the difference between conventional and a satellite-free, 
metallic powder. 
 

 
Figure 3: SEM photos of metallic powders produced with 
conventional and satellite-free powder atomizer towers. 
 
Sample Preparation and Testing 
In Table 3 is an overview of the parameters used for analyzing 
the various coatings sprayed. Specific details are below. 
 
Sample preparation:  Standard 300 x 200 x 5 mm S235JR 
mild steel plates were used for all tests. Prior to spraying they 
were grit blasted to remove all rust, oxide and any dirt. The 
sample was then weighed before and after spraying, and the 
amount of powder sprayed was also weighed before and after.  
 
Microscopy: After spraying the samples were sectioned using 
a Presi Mecatone T260 cut off machine, mounted and polished 
on a Presi Mecapol P230 polishing machine. All samples were 
studied in cross-section on a Leica DM4000M optical 
microscope. The samples were not etched.  
 
Porosity measurement:  Coating porosity was measured by 
two distinctly different methods. One was with the polished 
cross section in the optical microscope using the Motic Images 

Advanced 3.2 image analysis software. The other method used 
was the water absorption method (Ref 9) performed at the 
Swedish research institute Swerea IVF AB.  
 
Microhardness:  Microhardness on WC/Co/Cr samples was 
measured on polished cross sections on a Vickers hardness 
machine with a 300 g load (HV0.3). For the NiCrBSi and Fe-
based self-fluxing coatings hardness was measured using a 
Vickers hardness machine with a 2 kg load (HV2). All values 
quoted are average values. 
 
Bond strength measurement:  Bond strength was measured at 
the Swedish research institute Swerea IVF AB using the EN 
582 procedure.  
 
Surface roughness measurement:  The surface roughness of 
the samples in PART A trials was measured and standard Ra 
and Ry values were given in microns. 
 
Table 3: Test procedure overview 
 

Porosity Water absorption + image 
analysis 

Bond strength EN 582 
Coating thickness Micrometer and in optical 

microscope 
Hardness HV0.3 and HV2 
Flow ability Hall flow 
Powder chemistry Induction Coupled Plasma 
Particle size distribution JEL sieves 
DE% EN ISO 17836 
Powder feeding Weighing and ocular from 

gun 
Parameter optimization Varying parameters 
Temperature influence Temperature measurement 
Surface roughness Ra and Ry 

 
 

Results 
 
PART A 
An overview of the PART A trial results are given in Table 4, 
with the number of the sample corresponding to the spray 
conditions given in Table 1. What is clear is the large variation 
in the values of DE (%), hardness and surface roughness, and 
quite a poor correlation between the parameter in terms of 
quality. The best all-rounder appears to be sample 16, which 
offers a HV0.3 value of 1229 and a DE of 42% with one of the 
lowest Ra/Ry values. However even higher DE values were 
measured at 46% in 2 samples but at the expense of lower 
hardness values. The highest HV0.3 values of 1423 and 1351 
were obtained but both at a DE of 32%. 
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