Influence of different concentrations of Mg on the photorefractive gain in LiNbO_{3}

S González-Martínez ${ }^{1,2}$, J Castillo-Torres ${ }^{2}$, JG Murillo ${ }^{1}$, Rurik Farías ${ }^{\mathbf{1}}$, J Hernández $A^{\mathbf{3}}$, and H Murrieta $\mathbf{S}^{\mathbf{3}}$
${ }^{\prime}$ Centro de Investigación en Materiales Avanzados S.C., Miguel de Cervantes 120, Complejo Industrial Chihuahua, México; ${ }^{2}$ I Instituto de Física y Matemáticas, Universidad Tecnológica de la Mixteca, carretera a Acatlima Km 2.5, CP 69000, Huajuapan de León, Oaxaca, México; ${ }^{3}$ Instituto de Física, Universidad. Nacional Autónoma de México, Apartado Postal 20-364, México Distrito Federal, Código Postal 0100, México; e-mail:
jose.murillo@cimav.edu.mx.

Abstract

Dependence of photorefractive response on c -axis orientation for LiNbO_{3} at several magnesium contents has been observed. When c-axis is perpendicular to the incidence plane the optical damage persists even above threshold and diminished below threshold. © 2008 Optical Society of America. OCIS codes: $050.2770 ; 160.5320 ; 190.2620 ; 190.5330 ; 190.7070$.

1. Introduction

The photorefractive effect can modify in electro-optic materials, generally under long-time exposition of laser light, the optimum conditions for anharmonic-oscillator-type nonlinear optical applications[1], such as second harmonic generation, self-focusing, and optical bistability between other novel effects. Doping with In, Zn, or Mg the photorefractive response of lithium niobate almost vanishes, giving the opportunity of taking advantage of its Lorentz-oscillator-type nonlinear optical properties[2]. In the particular case of $\mathrm{Mg}: \mathrm{LiNbO}_{3}$ exist a threshold in Mg content for which the photorefractive effect is almost destroyed. This threshold value is around $4.6 \mathrm{~mol} \% \mathrm{MgO}$ in congruent melt[3]. In this work, we have estimated the range comprising the threshold concentration of Mg incorporated in LiNbO_{3}. In addition, photorefractive gains at 532 nm for six LiNbO_{3} samples at two c-axis orientations with different Mg content levels, using the two-wave coupling technique have been obtained. An outstanding anisotropic behavior of photorefractive inhibition against polar axis orientation is observed.

2. Experimental procedure

In this work we investigated six single LiNbO_{3} crystals with different Mg concentrations acquired from a commercial supplier. These samples were grown by the conventional Czochralski method in air. They were pulled along the c-axis and so the polar axis was parallel to pulling direction. Atomic absorption spectroscopy was used to measure the amount of Mg incorporated in each crystal. Photorefractive gain as a function of fringe spacing using the two-wave mixing technique in co-propagation configuration was also obtained. The laser light polarization was vertical, i.e. perpendicular to the incident plane. Two crystal orientations were considered: I) c-axis of sample parallel and II) perpendicular to the incidence plane of beams which are referred as case I, and case II respectively. A continuous-wave Nd: YVO_{4} laser operating at 532 nm with a coherent length $\sim 10 \mathrm{~cm}$ and an output optical intensity of $0.69 \mathrm{~W} / \mathrm{cm}^{2}$ was used.

According to the two-wave coupling setup the photorefractive gain involving the incidence angle and/or grating spacing is given by

$$
\begin{equation*}
\Gamma=\frac{2 \pi n_{o, c}^{3} r_{13}}{\lambda \cos \theta} E_{q} \sqrt{\frac{E_{D}^{2}+E_{p H}^{2}}{\left(E_{D}+E_{q}\right)^{2}}} \tag{1}
\end{equation*}
$$

where n_{0} and n_{e} are the ordinary and extraordinary refractive indices for case I and II respectively, r_{13} is the effective linear electro-optic coefficient, λ is the light wavelength, θ is the angle between one of the beams and the incidence face normal, $E_{q}=q N^{+} \Lambda / 2 \pi \varepsilon \varepsilon_{0}$ is the trap-limited saturation field, $E_{D}=2 \pi K_{B} T / q \Lambda$ is the diffusion field and $E_{P H}=p \gamma_{R} N_{A} / q \mu s\left(N_{D}-N_{A}\right)$ is the bulk photovoltaic electric field. As is usual, q is the elementary charge, N_{A} is the density of acceptors, N_{D} is the density of donors, $N^{+}=$ $N_{A}\left(N_{D}-N_{A}\right) / N_{D}$ is called the effective trap density, Λ is the grating spacing, ε is the dielectric constant of material, ε_{0} is the vacuum permittivity, K_{B} is the Boltzmann constant, T is the absolute temperature, p is an equivalent photovoltaic constant, γ_{R} is the recombination constant, μ is the charge mobility, and s is the cross section for photoexcitation. Each parameter of the right-hand side of equation for $E_{P H}$ is usually considered a constant.

3. Results

A large dependence of photorefractive effect on c -axis orientation for $\mathrm{Mg}: \mathrm{LiNbO}_{3}$ has been observed. Despite that Mg content is above threshold, the photorefractive response of this host persists if the c -axis is perpendicular to the incidence plane of beams in the two-wave mixing setup, whereas an optical-damage resistance greatly increases if Mg content is below threshold. Accordingly, this suggests that, besides photorefractive applications, Mg : LiNbO_{3} can be used in anharmonic-oscillator-type nonlinear optical phenomena, in which the photorefractive response can be inhibited due to its anisotropic photorefraction only by selecting a suitable crystal orientation. Lastly, it has been proposed one model which takes into account a dependence of photovoltaic electric field on grating spacing, and an estimation of bulk photovoltaic field has also been carried out.

4. Acknowledgments

J. Castillo-Torres and S. González-Martínez acknowledge financial support by Grant CONACYT (Mexico) No. 46833.

5. References

[1]. P. Sen, N. Sisodia, and K. S. Bartwal, Opt. Mat. 29, 206 (2006).
[2]. T. Volk, N. Rubinina, and M. Wöhlecke, J. Opt. Soc. Am. B 11, 1681 (1994).
[3]. J. Wen, L. Wang, Y. Tang, and H. Wang, Appl. Phys. Lett. 53, 260 (1988).

