

INSTITUTO TECNOLÓGICO de saltillo

ARTÍCULO 15

EFECTO DE LAS PARTÍCULAS DE SiO₂ SOBRE LA MICROESTRUCTURA DE COMPÓSITOS Al/SiC/MgAl₂O₄ PROCESADOS POR INFILTRACIÓN REACTIVA

M. Rodríguez-Reyes¹, M. I. Pech-Canul², J.A. Aguilar-Martínez³, H.F. Lópéz⁴

¹ INSTITUTO TECNOLÓGICO DE SALTILLO ²CENTRO DE INVESTIGACIÓN Y DE ESTUDIOS AVANZADOS DEL IPN, UNIDAD SALTILLO ³ CENTRO DE INVESTIGACIÓN EN MATERIALES AVANZADOS, S.C. ⁴UNIVERSITY OF WISCONSIN-MILWAUKEE

SALTILLO, COAHUILA 21, 22 Y 23 DE OCTUBRE DEL 2009.

Efecto de las partículas de SiO₂ sobre la microestructura de compósitos Al/SiC/MgAl₂O₄ procesados por infiltración reactiva

M. Rodríguez-Reyes¹*, M. I. Pech-Canul², J.A. Aguilar-Martínez³, H.F. Lópéz⁴

 ¹ Instituto Tecnológico de Saltillo, Venustiano Carranza 2400, Col. Tecnológico C.P. 25280 Saltillo, Coahuila México. *Corresponding author. E-mail address: <u>mreyes@its.mx</u>, <u>mariordz1@yahoo.com.mx</u>, Phone: +52 (844) 438-9500 Ext. 1150, 1137.
 ²Centro de Investigación y de Estudios Avanzados del IPN, Unidad Saltillo, Carr. Saltillo-Mty Km 13.5, Ramos Arizpe Coahuila, C.P. 25900, México.
 ³Centro de Investigación en Materiales Avanzados, S.C, Alianza Norte 202, Parque de Investigación e Innovación Tecnológica, Nueva Carretera Aeropuerto Km. 10, Apodaca, Nuevo León, C.P. 66600, México

⁴University of Wisconsin-Milwaukee, 3200N, Cramer, Milwaukee, WI 53201, USA

RESUMEN

En el presente trabajo se estudió el efecto de las partículas de SiO₂ sobre la microestructura de compósitos Al/SiC/MgAl₂O₄ procesados por infiltración reactiva. Los compósitos se caracterizaron por DRX y MEB con facilidades para microanálisis por EDE. Se realizó un análisis en la interfase metal/compósito, ya que esta zona estuvo más tiempo en contacto con el metal en estado líquido y por tanto es la más susceptible a la formación de Al₄C₃. Los resultados muestran que el efecto benéfico de las partículas de SiO₂ en las preformas se ve reflejado en la condición microestructural de la interfase metal/compósito. Se encontró que en el sistema sin SiO₂ (sistema 1) hubo una mayor zona de reacción en la interfase metal/compósito seguido del sistema con SiO₂ como "cristobalita" (sistema 3), siendo el sistema con SiO₂ como "cuarzo" (sistema 2) el que presentó una menor zona de reacción. El análisis en la interfase metal/compósito de muestras del sistema 1 reveló la presencia de Al(OH)₃. La formación de Al(OH)₃ es atribuida a la reacción del Al₄C₃ con la humedad del ambiente. También se encontró que la estructura cristalina de la sílice tiene un efecto benéfico en la prevención de la formación de Al_4C_3 , ya que el análisis indica que el empleo de SiO₂ en forma de "cuarzo" tiene un mayor beneficio que la SiO₂ en forma de "cristobalita" para prevenir la formación de Al₄C₃.

ABSTRACT

The effect of the SiO₂ particles on the microstructure of Al/SiC/MgAl₂O₄ composites prepared by reactive infiltration was investigated. Composites were characterized by XRD, SEM and EDX. Since the outer surface of a cylindrical preforms is the area exposed to the liquid aluminum the longest time period, it is expected to be more susceptible to the formation of Al₄C₃. Results show that the beneficial effect of the SiO₂ particles is reflected in the microstructural condition of the metal/composite interface. It was found that specimens from the system without SiO₂ (system 1) exhibited the largest zone of reaction at the metal/composite interface, followed by the specimens from the systems with "cristobalite" (system 3), being the specimens form the system with "quartz" (system 2) the ones with the smallest reaction zone. The analysis at the metal/composite interface in specimens from system 1 reveals the presence of Al(OH)₃ due to the reaction of Al₄C₃ with moisture in the atmosphere. It was also found that the crystal structure of the silica has a beneficial effect because it prevents formation of Al₄C₃. The analysis indicates that the use of SiO₂ in the form of "quartz" has a better effect that the SiO₂ in the form of "cristobalite" to prevent the formation of Al₄C₃.

1. INTRODUCCIÓN

Durante el procesamiento de compósitos Al/SiC_P existe la posibilidad de generar fases indeseables $AI_4C_3^{[1-2]}$. La fase AI_4C_3 es inestable al medio ambiente y su efecto neto es degradar las propiedades del material compuesto^[1-4]. Particularmente, el uso de silicio para el control de las reacciones en la interfase Al/SiC has sido ampliamente aceptado y practicado, no únicamente como elemento aleante, sino también como recubrimiento sobre el reforzamiento (SiC). También, se ha utilizado SiO₂ como recubrimiento del SiC, con el objeto de que el SiO₂ reaccione con la aleación de aluminio, y así generar el silicio necesario para evitar la formación de AI_4C_3 .

La literatura^[5-9] muestra que hay gran interés en la formación de una capa de SiO₂ sobre las partículas de SiC por medio de la oxidación pasiva, pero la principal desventaja del método, es la dificultad para controlar la uniformidad y espesor de la capa de SiO₂^[10]. Por ejemplo, para la generación de una capa de SiO₂ (~100 nm) sobre SiC_P se requiere del calentamiento de las partículas por arriba de 1200°C y de varias horas de mantenimiento^[10]. Cuando las partículas oxidadas entran en contacto con el aluminio líquido, el consumo de la capa de SiO₂ depende tanto de la temperatura y tiempo de contacto con el metal líquido.

El procesamiento de compósitos Al-Mg-Si/SiC_P^[11] con alta fracción volumen de reforzamiento por infiltración no asistida requiere de temperaturas altas (T>950°C) y tiempos largos, por lo cual es posible la generación de Al₄C₃. Actualmente se investiga una nueva ruta^[12] para prevenir o mitigar la fase indeseable Al₄C₃, la cual consiste en la incorporación de partículas de SiO₂ en preformas de SiC_P.

El objetivo de este trabajo fue estudiar el efecto de partículas de sílice en el sistema y su efecto sobre la microestructura de los compósitos resultantes procesados por infiltración sin presión, para contribuir a mitigar los productos de reacción perjudiciales. El análisis se centró en la interfase Metal/Compósito (M/C) debido a que es la zona expuesta durante mayor tiempo al metal líquido y por tanto la más susceptible a la formación de Al_4C_3

2. EXPERIMENTACIÓN

Procedimiento experimental.

La caracterización de los polvos de SiC y SiO₂ se realizó por medio de las siguientes técnicas y cuyos resultados se muestran en la Tabla 1:

- Distribución de tamaños de partículas utilizando un analizador COULTER LS Particle Size Analyzer.
- Identificación de fases por medio de difracción de rayos (DRX).
- Morfología de las fases por medio de microscopía electrónica de barrido (MEB).
- Medición de densidad por medio de picnometría de helio.

Tabla 1. Características de los polvos empleados para la elaboración de preformas con 50 % de porosidad.

Polvos	Pureza	Tamaño Promedio de partícula (μm)	Densidad (g/cm³)	Morfología
SiC-α (Negro)	Comercial	20	3.19	Irregular
SiO ₂ (Cuarzo)	Grado Reactivo (Spectrum)	3	2.72	Aglomerados
SiO ₂ (Cristobalita)	Grado Reactivo (Fluka)	4	2.49	Aglomerados

Preparación de materiales para pruebas de infiltración.

Se fabricaron preformas de geometría cilíndrica (2.0 cm de altura y 2.0 cm de diámetro) mezclando los polvos de SiC y SiC:SiO₂ con 10 % e.p. de dextrina como medio aglutinante y 0.5 ml de agua destilada. Las mezclas se colocaron en un dado de acero y se compactaron por medio de una prensa hidráulica para producir preformas con 50 % de porosidad. Las preformas se secaron a 125°C y curaron a 225°C; ambos procesos se llevaron a cabo por

un tiempo de 2 horas. Durante el tratamiento parte del medio aglutinante en la preforma se removió por volatilización. En la Tabla 2 se presentan los sistemas de estudio aleación/reforzamiento para la fabricación de compósitos Al-Mg-Si/SiC_P.

Aleación (% e.p.)	Reforzamiento	Sistema
	SiC _P	1
Al-10Mg-12Si	SiC_P + SiO_{2P} (cuarzo grado reactivo)*	2
	SiC_P + SiO_{2P} (cristobalita grado reactivo)*	3

* 6 % e.v. de SiO_{2P}

Se prepararon moldes cerámicos (crisoles) a partir de tabla de fibra cerámica de 2.5 cm de espesor (tipo M 2300). Los moldes se recubrieron con pintura de nitruro de boro (BN) a 250°C y secados por 1 hora. Para las pruebas de infiltración, se fabricó una aleación Al-10Mg-12Si % e.p., empleando aluminio, silicio metálico y magnesio de pureza comercial. La aleación se fabricó en un horno de inducción al aire y la aleación fundida Al-Si se desgasificó a 750°C con Ar de ultra alta pureza (Ar - U.A.P.) durante 10 min. Posteriormente, a 650°C se agregó el Mg. Previo al vaciado de la aleación en lingotes, se tomaron muestras para el análisis químico por emisión por chispa.

Se preparó la aleación para las pruebas de infiltración, que consistió del corte del lingote de la aleación de aluminio, para obtener placas, las cuales se desbastaron y posteriormente se limpiaron ultrasónicamente con acetona, requiriéndose de aproximadamente 40 g de aleación para cada prueba de infiltración.

Pruebas de infiltración no asistida.

Las preformas se colocaron en forma vertical dentro de un molde cerámico con la cantidad de aleación de aluminio necesaria para cubrir la fracción porosa de la preforma. El sistema molde-metal-preforma se introdujo en un horno tubular de alta temperatura THERMOLYNE 59300. El horno está provisto de un tubo de alta alúmina con diámetro interno de 6.5 cm y cuenta con un sistema para la entrada y salida de gas por sus extremos.

El sistema se calentó, a una velocidad de 15 °C/min. hasta la temperatura de prueba establecida. El sistema se mantuvo isotérmicamente a diferentes temperaturas: 950±5, 1000±5, 1050±5 y 1100± 5°C y se mantuvo por varios tiempos de prueba (0, 20, 40 y 60 min.) en atmósfera de nitrógeno. Durante el procesamiento se empleó Ar (U.A.P.) hasta la temperatura de 600°C y posteriormente se cambió de Ar (U.A.P.) \rightarrow N₂ (U.A.P.). La presión de trabajo en el proceso fue ligeramente superior a la presión atmosférica (≈1.2 atm.), lo cual permitió el flujo de gas dentro del horno. La temperatura de prueba se monitoreó utilizando un termopar tipo K introducido por la tapa de salida, el cual está colocado cerca del sistema molde-metal-preforma. El enfriamiento se llevó a cabo en N₂ (U.A.P.) hasta temperaturas menores de 550°C.

3. CARACTERIZACIÓN DE LOS COMPÓSITOS

Una vez solidificadas y enfriadas las muestras se procedió a seccionarlas longitudinalmente con una cortadora de disco de diamante para la preparación materialográfica y el posterior análisis microestructural.

La identificación de fases de los compósitos se realizó por medio de DRX, empleando un difractómetro de rayos-X, marca Philips 3040. El análisis por difracción de rayos-X se realizó empleando radiación K_{α} de cobre y el intervalo del ángulo de barrido empleado para cada probeta fue de 20 a 100°. La caracterización se realizó a un voltaje de excitación del ánodo de 40 kV y una corriente de 30 mA. Todas las pruebas se llevaron a cabo a una velocidad de 0.02°/s.

El análisis microestructural de los compósitos se realizó por microscopía electrónica de barrido (MEB), empleando un MEB, marca Philips (modelo XL30 ESEM). El MEB cuenta con un dispositivo para microanálisis por espectroscopía por dispersión de energía (EDE), marca EDAX (modelo Falcon).

4. RESULTADOS Y DISCUSIÓN

Con el objeto de determinar si la fase indeseable Al_4C_3 se encuentra presente en los especímenes de los tres sistemas estudiados, se realizó análisis por DRX. En la Fig. 1 se muestran los patrones de difracción de rayos-X de muestras procesadas a 1100°C y 60 min. de permanencia. En las muestras de los tres sistemas se identificaron las fases SiC, Si, Mg₂Si y AlN. No se identificco la fase indeseable Al_4C_3 en ninguno de los sistemas. Sin embargo, en las muestras de los sistemas 2 y 3 se observó además, la presencia de la fase MgAl₂O₄. La presencia de esta fase se explica por la reacción del SiO₂ con la aleación de aluminio, durante el proceso de infiltración reactiva^[10, 12]. Por otra parte, en los sistemas 2 y 3 se identificaron las mismas fases del sistema 1 (sin SiO₂*p*), además de la nueva fase espinela de magnesio y aluminio (MgAl₂O₄). La fase MgAl₂O₄ presenta una estructura cúbica (FCC, a = 0.808 nm, JCPDS: 05-0672) y la máxima reflexión en los patrones de DRX se presenta en 20: 36.867.

La formación de la fase $MgAl_2O_4$ es atribuida por la reacción de las partículas de SiO_2 presentes en las preforma cerámica con la aleación de aluminio de acuerdo con la reacción presentada por la ec. (1).

$$2SiO_{2 (s)} + 2AI_{(l)} + Mg_{(l)} \rightarrow MgAI_{2}O_{4(s)} + 2Si_{(l)}$$
(1)

 $\Delta G = -401892.9 - 459.76T - 0.02T^{2} + 56.75T \ln T - 1.7x10^{6}/T + 1922.24T^{0.5} + 1.64x10^{8}/T^{2};$ cuando la fase SiO₂ está en forma de "*Cuarzo*".

 $\Delta G_{(1100^{\circ}C)} = -438 \text{ kJ/mol}$

 $\Delta G = -426584.7 - 527.28T - 0.02T^{2} + 63.75TInT - 0.63x10^{6}/T + 2997.6T^{0.5} + 0.93x10^{8}/T^{2};$ cuando la fase SiO₂ está en forma de "*Crsitobalita*".

 $\Delta G_{(1100^{\circ}C)} = -445 \text{ kJ/mol}$

Fig. 1 Patrones de difracción de rayos-X de los compósitos correspondientes a los diferentes sistemas procesados a 1100°C y 60 min. de permanencia.

Siguiendo con el estudio microestructural, en la Fig. 2 se muestran fotomicrografías por MEB correspondientes a las interfases M/C de los diferentes sistemas procesados a 1100°C y 60 min., donde a) y A) corrresponden al sistema 1 (sin SiO₂), b) y B) sistema 2 (~6 % e.v. de SiO₂ en forma de *"Cuarzo"*) y c) y C) sistema 3 (~6 % e.v. de SiO₂ en forma de *"Cristobalita"*). El análisis se realizó a diferentes tiempos después de haber sido procesados los compósitos. Las letras minúsculas corresponden a las muestras analizadas 20 días después del procesamiento y las letras mayúsculas corresponden a las muestras analizadas 17 meses después del procesamiento.

En las muestras analizadas 20 días después, el análisis por DRX y EDE no reveló la presencia de Al_4C_3 . Sin embargo, el análisis en la interfase M/C de muestras de los diferentes sistemas 17 meses después del procesamiento muestra la presencia de zonas de reacción. El espesor de dichas zonas de reacción depende del sistema en cuestión. Mientras que para el sistema 1, la extensión es de aproximadamente 1 mm, para los sitemas 2 y 3 es de 20 y 80 µm, respectivamente. En investigaciones previas^[12], el análisis en la interfase M/C de estos sistemas realizado 4 meses después del procesamiento reveló la existencia de una zona de reacción en muestras del sistema 1 (sin SiO₂), en contraste con el de los sistemas 2 (~6 % e.v. de SiO₂ en forma de *"Cuarzo"*) y 3 (~6 % e.v. de SiO₂ en forma de *"Cristobalita"*) en donde no se identificó ninguna zona de reacción.

Fig. 2 Fotomirografías por MEB correspondientes a las interfases M/C de los diferentes sistemas, el análisis se realizó a diferentes tiempos después de haber sido procesados los compósitos. a) y A) Sistema 1 (sin SiO₂), b) y B) Sistema 2 (~6 % e.v. de SiO₂ en forma de *"Cuarzo"*) y c) y C) Sistema 3 (~6 % e.v. de SiO₂ en forma de *"Cristobalita"*).

El hecho de que la fase indeseable Al_4C_3 no pudo ser identificada, sugiere que esta se encontraba pero en cantidades pequeñas. Por otra parte, el monitoreo de las muestras a la intemperie con el tiempo, resulta proporcionar información muy valiosa para conocer de forma indirecta la posible existencia de Al_4C_3 en la interfase M/C.

En la Fig. 3 se muestra el patrón de difracción de rayos-X de los polvos obtenidos de la zona de reacción de un especimen del sistema 1 procesado a 1100° C y 60 min. de permanencia. El análisis reveló la presencia de hidróxido de aluminio (Al(OH)₃), el cual se atribuye a la reacción del Al₄C₃ con la humedad del ambiente, de acuerdo a las siguentes reacciones posibles^[1, 12]:

$$4AI + 3SiC \leftrightarrow AI_4C_3 + 3Si$$
 (2)

$$AI_4C_3 + 18H_2O \rightarrow 4AI(OH)_3 + 3CO_2 + 12H_2$$
 (3)

$$AI_4C_3 + 12H_2O \rightarrow 4AI(OH)_3 + 3CH_4$$
(4)

Fig. 3 Patrón de difracción de rayos-x de los polvos correspondientes a la zona de reacción de la interfase M/C en el sistema 1 del especimen procesado 1100°C por 60 min. de permanencia.

5. CONCLUSIONES

La incorporación de partículas de SiO₂ en las preformas de SiC_P juega un papel muy importante al disminuir la generación de productos de reacción indeseables (Al₄C₃). El monitoreo de las muestras a la intemperie, la presencia de Al(OH)₃ y la degradación de la interfase M/C, reflejan en forma indirecta la presencia de la fase indeseable Al₄C₃. También se encontró que la presencia de sílice en forma de cuarzo tiene un mejor efecto que la sílice en forma de cristobalita para prevenir la formación de la fase Al₄C₃.

6. AGRADECIMIENTOS

Los autores agradecen a Microabrasivos de México S.A. de C.V. por el suministro de los polvos de SiC. M. Rodríguez-Reyes agradece también a Ing. Felipe Márquez, M.C. Sergio Rodríguez y Lic. Ma. Del Socorro García por su asistencia durante la caracterización por microscopía electrónica de barrido, difracción de rayos X y análisis químico.

7. REFERENCIAS

- [1] Iseki, T., Kameda, T., y Maruyama, T., "Interfacial reactions between SiC and aluminium during joining", J. Mater. Sci., 19, 1692-1698 (1984).
- [2] Viala, J.C., Fortier, P. y Bouix, J., "Stable and metastable phase equilibria in the chemical interaction between aluminium and silicon carbide", J. Mater. Sci., 25, 1842-1850 (1990).
- [3] Fan, T., Maka, M. y Mori, H., "The effect of Si upon the interfacial reaction characteristics in SiC_P/Al-Si system composites during multiple-remelting", J. Mater. Sci., 34, 5175-5180 (1999).
- [4] Lloyd, D.J., Lagace, H., McLeod, A. y Morris, P.L., "Microstructural aspects of aluminium-silicon carbide particulate composites produced by a casting method", Mater. Sci. Eng., A107, 73-80 (1989).
- [5] Lee, J.C., Lee. J.I. y Lee, H.I., "Observation of three-dimensional interfacial morphologies in SiC_P/Al composites and its characterization", J. Mater. Sci. Lett., 15, 1539-1542 (1996).
- [6] Lee, J.C., Park, S.B., Seok, H.K., Oh, C.S. y Lee, H.I., "Prediction of Si contents to suppress the interfacial reaction in the SiC_P/2014 AI composite", Acta Mater., 46, 8, 2635-2643 (1998).
- [7] Lin, R.Y. y Kannikeswaran, K., "Interfacial reaction kinetics of Al/SiC composite during casting, Interfaces in Metal-Ceramics Composites", 153-164 (I989). The Minerals, Metals & Materials Society.
- [8] Shi, Z., Yang, J.M., Lee, J.C., Zhang, D., Lee, H.I. y Wu, R., "The interfacial characterization of oxidized SiC_P/2014 Al composites", Mater. Sci. Eng., A303, 46-53 (2001).
- [9] Lee, J.C., Byun, J.Y., Park, S.B. y Lee, H.I., "Prediction of Si contents to suppress the formation of Al₄C₃ in the SiC_P/Al composite", Acta Mater., 46, 5, 1771-1780 (1998).
- [10] Lee, J.C., Ahn, J.P., Shi, Z., Kim, Y. y Lee, H.I., "Modification of the interface in SiC/Al composites", Metall. Mater. Trans., 31A, 2361-2368 (2000).
- [11] Rodríguez-Reyes, M., Pech-Canul, M.I., Parras-Medécigo, E.E. y Gorokhovsky, A,
 "Effect of Mg loss on the kinetics of pressureless infiltration in the processing of Al-Si-Mg/SiC_P composites", J. Mater. Lett., 57, 2081-2089 (2003).
- [12] Rodríguez-Reyes, M., De la Peña, J.L., Aguilar-Martínez, J.A. y Pech-Canul, M.I., "Microstructural modification of Al/SiC_P composites to avoid Al₄C₃ via pressureless infiltration", VI International Conference on Composites and Materials", Morelia, Mich., México, 28-30 de Mayo (2003).