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1. Introduction  

The discovery of the giant magnetoresistance (Baibich et al., 1988) attracted much scientific 
interest to the magnetization dynamics at the nano-scale, which eventually led to the 
formation of a new field – spintronics – aiming to join the conventional charge transfer 
electronics with spin-related phenomena. The characteristics of spintronic devices (Žutic, 
Fabian & Das, 2004) are very attractive, including extremely small size (nanometer scale), 
fast response time and high operating frequencies (on the GHz domain), high sensitivity 
and vast spectrum of possible applications ranging from magnetic memories (based on 
magnetization reversal) to microwave generators (involving steady magnetization 
precession) (Kiselev et al., 2003). The design of these devices, together with the resolution of 
many problems required for full harvest of spin transport effects in traditional silicon-based 
semiconductor electronics, is greatly aided by theoretical studies and numerical simulations.  
For these, one should use adequate models describing magnetization dynamics at the 
desired scale. If we go down to atomic level, the modelling from first-principles is 
obligatory. Despite a huge progress in this field (and significant improvement of the 
computational power of modern equipment), these calculations are far from being real-time 
and can embrace only a limited amount of particles. Increasing the size of the computational 
cell to several nanometers, it is possible to introduce the micromagnetic modelling 
technique, for which every ferromagnetic particle is characterized by an average magnetic 
moment M. These moments can interact with each other by short and long range forces due 
to exchange coupling and dipole-dipole interactions. The evolution of the individual particle 
is governed by the Landau-Lifshitz-Gilbert (LLG) equation – a semi-classical approximation 
allowing to represent the time evolution of the magnetization vector M depending on 
applied magnetic fields and spin-polarized currents passing through the particle.  
Micromagnetics is a rapidly-developing field allowing tackling many serious problems 
(Fidler & Schrefl, 2000; Berkov & Gorn, 2006). It is far simpler to implement in comparison 
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with first principles calculations, so that modern computers can be efficiently used even for 
3D micromagnetic simulations of large systems (Scholz et al., 2003; Vukadinovic & Boust, 
2007). The amount of calculations required strongly depends on the space discretization of 
the modelled object. For maximum accuracy, the volume of the magnetic body is divided 
into a set of triangular prisms according to different tessellation algorithms. The system thus 
becomes represented by a set of magnetization vectors Mi corresponding to the nodes of the 
resulting mesh. The evolution of the system can be obtained by solving the LLG equation 
using finite element methods (Koehler & Fredkin, 1992; Szambolics  et al., 2008), which may 
involve re-structurization of the mesh to account for variation of the magnetization 
distribution inside the sample. These calculations require considerable computational 
resources and thus are usually performed on multi-processor computers or clusters thereof.  
The calculations can be optimized for the case of regular meshes, with the simplest 
numerical procedures available for cubic (3D) and square (2D) grids. In this case, the 
cumbersome finite element methods can be substituted by simpler finite difference methods, 
which benefit from pre-calculated coefficients for the derivatives required in the calculation 
of near and far range interactions between the magnetic particles. The most time consuming 
part of micromagnetic simulations concerns long-range interactions contributing to the 
demagnetizing field. As this is formed by every particle belonging to the object, one should 
calculate a complete convolution for every magnetic moment Mi. In the case of uniform 
grids, these calculations can be much simplified recalling that convolution in normal space 
correspond to multiplication in the Fourier space. Thus, one has to Fast Fourier Transform 
(FFT) the components of the demagnetizing field (Schabes & Aharoni, 1987) and Mi for 
every grid point, multiply them and inverse-FFT the result to obtain the demagnetizing 
field. The other option is to use the fast multipole algorithm (Tan, Baras & Krishnaprasad, 
2000), which can be also accelerated with the Fast Fourier Transform (Liu, Long, Ong & Li, 
2006). The downside of uniform square grids is the complication to represent non-
rectangular objects. Even at small grid step the curves or lines that are not perpendicular to 
the grid directions generate the staircase structure, which is artificial and has no counterpart 
in the modelled ferromagnetic objects. This staircase acts as a nucleation source of 
magnetization vortices, which may lead to incorrect simulation data suggesting vortex-
assisted magnetization dynamics (García-Cervera, Gimbutas & Weinan, 2003) while the real 
systems may display coherent magnetization rotation. To solve this issue (and to retain the 
benefits of fast calculation of demagnetizing fields using FFT) one can introduce corrections 
for the boundary cells (Parker, Cerjan & Hewett, 2000; Donahue & McMichael, 2007), 
allowing to take into account the real shapes in place of its cubic or square cells. 
However, the general methodology of solving the LLG equation can be discussed for 
simpler models without the need to consider convolution, tessellation or grid discretization 
errors for smooth contours. Actually, we can consider a single magnetic moment obeying 
the LLG equation, which is the situation that can be found on a larger scale – thin magnetic 
films with dimensions of dozens of nanometers. Stacking several ferromagnetic films 
together and separating them by a non-magnetic spacer, one can obtain the simplest 
spintronic device, a spin valve. The layers composing the valve serve different purposes and 
because of this should have different thickness. The thicker layer is bulk enough to preclude 
re-orientation of its magnetization vector by an applied magnetic field. To improve its 
stability, it is usually linked with an anti-ferromagnetic interaction with yet another 
substrate layer. The role of this fixed layer consists in aligning the magnetic moments of the 
passing carriers, so that the current injected into the second, much thinner analyzer layer, 
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will be spin-polarized. The analyzer layer, on the contrary, can be easily influenced by the 
applied magnetic field, and it will manage to change its magnetization as a whole – thus 
representing a macrospin (Xiao, Zangwill & Stiles, 2005). The experimental studies of spin 
valves successfully confirmed the theoretical predictions made in the macrospin 
approximation, including precessional and ballistic magnetization reversal, two types of 
steady magnetization oscillations – in-plane and out-of-plane, as well as magnetization 
relaxation to an intermediate canted state. 
The detailed discussion of the magnetization dynamics is out of the scope of this chapter; 
however, it is imperative to consider various representations of the main differential 
equations governing the motion of the magnetization vector, as well as to discuss the 
numerical methods for their appropriate solution. In particular, the modelling of the 
temperature influence over the system, which is usually done adding a thermal noise term 
to the effective field, leading to stochastic differential equations that require special 
numerical methods to solve them.  

2. Landau-Lifshitz-Gilbert equation 

Let us consider a magnetic particle characterized by a magnetization vector M, and 
subjected to the action of an effective magnetic field H and spin-polarized current J, 
rendering magnetic torques on the system. The changes of magnetization with time are 
governed by the Landau-Lifshitz-Gilbert equation:  

 ( )
S S

d d

dt M M dt

γ α
γ= − × + × × + ×

M M
M H M M J M  (1) 

The first term in the right side of the equation corresponds to the Larmor precession around 
the magnetic field direction, featuring a gyromagnetic ratio γ = 2.21×105 m/(As). The second 
term, proposed by Slonczewski (1996), describes the spin torque rendered by the injected 
current J. The third term was introduced by Gilbert (2004); it presents a phenomenological 
description of magnetization damping, caused by dissipation of the macrospin energy due 
to lattice vibrations, formation of spin waves and so on (Saradzhev et al., 2007). Thus, in the 
absence of energy influx (provided by injected current), the system should relax to a stable 
state. As the magnetic motion is effectively controlled by the interplay of driving and 
damping forces, it is natural to suggest a model of viscous damping with a coefficient α 
multiplied by the rate of change of the magnetization. On the other hand, it is unclear if a 
constant damping coefficient is sufficient to reproduce accurately the magnetization 
dynamics (Mills & Arias, 2006), which may require additional tweaking such as making α 
dependent on the orientation of the magnetization vector (Tiberkevich & Slavin, 2007). 
An essential feature of the LLG equation is that unconditionally preserves the length of the 
magnetization vector, which corresponds to the saturation magnetization MS of the material. 
All possible magnetization dynamics is thus confined to the re-orientation of M, which can 
be visualized as a phase trajectory formed by the motion of the tip of the magnetization 
vector over the sphere with radius MS. The effective magnetic field  

 ( ) /EXT DEM X X ANI Z Z SC M C M M= − −H H e e  (2) 

is composed of applied external field HEXT, demagnetization field with a constant CDEM 
(valid for thin film approximation), and anisotropy field with coefficient CANI = 2K1/µ0MS 
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with easy axis anisotropy constant  K1. For the case of very thin ferromagnetic films the easy 
magnetization axis will be located in the film plane, while the demagnetizing field will 
penalize deviations of the magnetization from this plane. Therefore, in our case the 
ferromagnetic film is set in the plane YZ, with an easy magnetization axis directed along the 
axis Z. The injected spin-polarized current is scaled with 1/ 4eVKη , with spin polarization 
degree η and volume of the analyzer layer V.  
Taking a cross product of the LLG equation with dM/dt, re-arranging the terms, and 
introducing the torque-inducing vectors Λ = H + α J and Δ = J – α H, one can transform the 
equation into the Landau explicit form, with the time derivative dM/dt on the r.h.s. only: 

 
1

1 1
( )

S

d

dt Mγ
= − × + × ×

M
M Λ M M Δ  (3) 

with a re-normalized gyromagnetic ratio γ1 = γ / (1+α2). For the calculations illustrated in 
this paper, we have used the common parameters for Co/Cu/Co spin valves (Kiselev et 
al., 2003): analyzer layer with dimensions 91×50×6 nm3, CANI = 500Oe, 4πMS = 10kOe, and 
α = 0.014. The main dynamic modes that can be obtained from the LLG equation include 
magnetization reversal between the stationary states MZ = ± MS, relaxation of the 
magnetization to intermediate canted states, and steady magnetization precession. To 
illustrate the ranges of variables H and J for which these states take place, it is useful to 
construct a dynamic diagram of the system (Fig. 1). The task can be simplified by 
choosing the proper numerical characteristics allowing clear distinction between the 
corresponding states. The situation with up/down and canted orientation of M is easily 
resolved by monitoring the average value of the magnetization component along the easy 
axis, <MZ>. In this way one can easily discover low-field and high-field magnetization 
switching. The former occurs when the applied field overcomes the anisotropy constant 
CANI, which is marked with a thick horizontal line in Fig. 1. Below it, the magnetization 
vector remains in the initial state pointing down. Above this line, the magnetization 
points upwards (Fig. 1a). Under high fields and applied currents, it is also possible to 
obtain magnetization pointing down (Fig. 1g). The transition between these two states 
comes through slow magnetization reversal with phase trajectories practically covering 
the entire sphere (Fig. 1h). Lowering the field, one can shift the stable point from the 
stationary states MZ = ± MS, reaching a canted state (Fig. 1e-g). The variation of current 
“opens” the canted state into a periodic trajectory (Fig. 1d). At this point, the observation 
of <MZ> does not suffice to distinguish between oscillating and non-oscillating states, 
because the average for a cyclic orbit gives a position of its centre, as if the system 
converges to the canted state. The situation becomes more complicated for complex phase 
portraits that contain several loops (Fig. 1b). To solve this problem, it is useful to calculate 
the Hausdorff dimension (Lichtenberg & Lieberman, 1983): 

 
0

log
lim

logH

N
D

ε ε→
= −  (4) 

where N is the number of cubes with side ε required to cover the phase portrait. If we are 
considering the stationary state, when the magnetization vector is fixed, the 
corresponding phase portrait will be a point with DH = 0. When the system performs 
magnetization oscillations along a fixed trajectory, the Hausdorff dimension will be equal 

www.intechopen.com



 
Numerical Simulations of Nano-Scale Magnetization Dynamics 

 

137 

or above unity. The higher values of DH will be achieved for higher number of loops,  
and when these will eventually cover the whole sphere, the dimension should reach the 
value of 2.  
 

 
Fig. 1. Dynamic diagram of macrospin system for different applied magnetic field and 
injected spin-polarized current. The right panel shows the characteristic phase portraits with 
grey oval corresponding to film plane YZ, and an arrow denoting averaged magnetization. 

The macrospin model features two types of steady oscillations. In the simplest case, the 
magnetization vector precesses around the canted axis, considerably deviating from the 
film plane (Fig. 1c, d), hence the name – out-of-plane precession (OPP). For lower values 
of injected current, the precession cycle splits into a butterfly-shaped curve (Fig. 1b), 
symmetric regarding the film plane. Thus, despite magnetization vector deviates from the 
film plane for certain periods, the average over the whole oscillation cycle will remain 
parallel to the axis Z, so that this type of phase portrait is called in-plane precession (IPP). 
The dynamic diagram shows how efficient is the use of the Hausdorff dimension for 
visual separation of the parameter areas where in-plane and out-of-plane precession takes 
place; it also works fine for complicated cases of multi-loop phase portraits triggered by 
pulsed fields and currents (see Horley et al., 2008). Now, having the idea of what to expect 
from the solution of the LLG equation, let us discuss in detail its different representations 
(including strengths and weaknesses thereof from the computational point of view), as 
well as numerical methods required for the most efficient and accurate solution of this 
equation. 

2.1 Cartesian projection 
As we are studying the evolution of the magnetization in three-dimensional space, it is 
straightforward to re-write the LLG for the Cartesian system as a set of ordinary 
differential equations regarding the individual components of the magnetization vector 
MX, MY and MZ: 
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1

1

1

( )

( )

( )

X
Y Z Z Y X S X

Y
Z X X Z Y S Y

Z
X Y Y X z S Z

dM
M M M M

dt
dM

M M M M
dt

dM
M M M M

dt

= −γ Λ − Λ − Ξ + Δ

= −γ Λ − Λ − Ξ + Δ

= −γ Λ − Λ − Ξ + Δ

 (5) 

with ( ) / SMΞ = ⋅ ΔM . The Cartesian representation of the LLG is very easy to implement; 
since it uses only basic arithmetic operations, ensuring very fast calculations. However, the 
length of the magnetization vector is not unconditionally preserved in the straightforwardly 
discretized version of these equations, so that even with a small integration step the system 
will diverge after a few dozens of iterations. The common methodology to keep the length 
of M constant consists in re-normalization of the magnetization after some (or each) 
iteration. However, such an approach is often criticized: when the magnetization vector 
goes out of the sphere with radius MS, it becomes difficult to say if it is adequate to solve the 
situation only by re-scaling of the vector without resorting to re-orientation of M.  

In fact, the condition M2 = M2 imposes a series of conditions starting with 0
d

dt
⋅ =

M
M  and 

22

2

d d

dtdt

 
⋅ = −  

M M
M . In the renormalization procedure one has 

 2 2
2

2 2
2

( ) 1 1
( ) ( ) ( ) ( )( )

21
1 ( ) ( )

d
t t

d ddtt t t t t t
dt dtd M

t
dtM

+ Δ
+ Δ ≈ ≈ + Δ − Δ

+ Δ

M
M

M M
M M M

M
 (6) 

so that the requirement of second order restriction is automatically implemented, fixing the 

component 
2

2
2

1
2

d
t

dt
Δ

M
along the direction of M(t) itself; however, it is not fixed completely, 

as we will see in section 2.4. Thus, one will need reasonably small time steps (below pico-
second level) to replicate the experimental system behaviour with an acceptable precision. 

2.2 Spherical projection 
The constant length of the magnetization vector invites to use spherical coordinates, 
describing the orientation of the magnetization vector with zenith and azimuth angles θ and 
ϕ. The LLG equation in this projection has the following form: 

 
1

1

[ sin cos cos ( cos sin ) sin ]

sin [cos ( cos sin ) sin sin cos ]

X Y X Y Z

X Y Z X Y

d

dt
d

dt

θ
γ ϕ ϕ θ ϕ ϕ θ

ϕ
θ γ θ ϕ ϕ θ ϕ ϕ

= −Λ + Λ − Δ + Δ + Δ

= − Λ + Λ − Λ − Δ + Δ
 (7) 

Despite the system is comprised only of two equations, it includes numerous trigonometric 
functions. As one immediately sees, the quantities sinθ, sinϕ, cosθ and cosϕ enters several 
times into the equations, calling for obvious optimization by calculating these quantities 
only once per iteration. However, as we need to take into account magnetic anisotropy as 
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well as demagnetizing field, the equations corresponding to (1) in the spherical coordinates 
representation would be loaded with trigonometric functions, which require a considerable 
calculation time. Additionally, one may want to obtain the projections of the magnetization 
vector (e.g., for visualization of the phase portrait): 

 

sin cos

sin sin

cos

X S

Y S

Z S

M M

M M

M M

θ ϕ

θ ϕ

θ

=

=

=

 (8) 

Such pronounced use of trigonometric functions slows down the calculation process 
considerably. In comparison with the Cartesian coordinate representation (including re-
normalization of magnetization vector on every step), the numerical solution of the LLG in 
the spherical representation is about six times slower (Horley et al., 2009). 

2.3 Stereographic projection 

Aiming to optimize the calculation time, one seeks to keep the LLG equation reduced to the 
lower number of components and avoiding, if possible, the use of special functions. One 
solution to this problem is the use of the stereographic projection mapping the sphere into a 
plane with the complex variable 1

2tan( ) ie ϕζ = θ . The LLG equation has the following form in 
the stereographic projection (Horley et al., 2009): 

 1*

2
[ ( ) ( )]

1
S S S SJ i H H i Jγ ς α ς

ζ ζ
+ + + += − + + −

+
 (9) 

The quantities marked with subscript “S+” correspond to spherical components of the vector 
H (and similarly J) in a rotated basis, defined by a rotation transforming eZ into er, so that 

2 *
0( 2 ) /(1 )SH H H H+ + −= − ζ − ςα + ζ ζ . The variables H+, H– and H0 represent the irreducible 

spherical components of a Cartesian tensor (Normand & Raynal, 1982). If the magnetization 
trajectory is limited only to the upper or to the lower hemisphere, the task of choosing the 
proper projector pole is trivial. However, if we want to study the magnetization reversal 
with the phase point passing from one pole to another, the corresponding equation written 
for a single projection pole will cause numerical overflow. The situation can be solved by 
dynamical switching of the projector pole. The variable 1ς = ±  denotes the projector pole 
(lower or upper). It is important to mention that for 1ς =  the upper pole will correspond to 
ζ = 0, while the lower (projector) pole will cause ζ → ∞ . Switching the projector pole to 
upper one ( 1ς = − ), one should recalculate the projection variable as *1 /′ζ = ζ , after which 
the value ζ = 0 will correspond to the lower, and ζ → ∞  to the upper pole. Thus, for phase 
portraits situated in the upper and lower hemisphere one will have two projections that 
merge at the equatorial line. It is convenient to present both projections in different colours 
(depending on the projection pole used) in the same plot, as it is illustrated in Figure 2 for 
the case of IPP and OPP cycles. This approach simplifies the visualization of the phase 
portraits, offering a useful “recipe” for obtaining a clear 2D plot of a 3D magnetization 
curve. The superimposed plots may become complicated for phase portraits composed of 
numerous loops, but this situation does not occur in a system subjected to constant fields 
and currents (Horley et al., 2008). 
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Fig. 2. Stereographic projection of in-plane (a) and out-of-plane (b) steady precession of a 
macrospin. Red curves show the projection from the upper pole, blue curves correspond to 
projection from the lower pole. The dotted grey circle represents the equator of the sphere 
|M| = const, normalized over saturation magnetization MS.  

To improve the calculation performance for the LLG equation written in the stereographic 
projection, it is important to optimize the procedure for projector pole switching. Our 
previous studies have shown that it is not productive to switch the pole each time the 
magnetization trajectory crosses the equator (Horley et al., 2009). A more useful approach 
consists in the introduction of a certain threshold value |ζ|S, after crossing which the pole 
switching should be performed. Our numerical tests shown that threshold values of  
|ζ|S = 1000 (corresponding to the zenith angle θ = 0.99936π) boosts the calculation 
performance, allowing to achieve five-time speed-up of the simulation comparing with the 
spherical representation of the LLG equation. Increase of |ζ|S by five orders of magnitude 
does not lead to any further improvement of calculation speed. 

2.4 Frenet-Serret projection 
Another representation of a curve in three-dimensional space can be made in the Frenet-
Serret reference frame consisting of tangent vector T, normal N and binormal B = T × N. The 
equations governing the variation of these vectors for a curve parameterized by the arc 
length s are the following 

 , ,
d d d

ds ds ds
χ χ τ τ= = − + = −

T N B
N T B N  (10) 

where χ and τ  are the curvature and torsion of the curve, given by  

 

2

2

3 ,

d d

dt dt

d

dt

χ

×

=

M M

M
       

2 3

2 3

22

2

d d d

dt dt dt

d d

dt dt

τ

 
× ⋅   =

×

M M M

M M
 (11) 

They depend on higher order derivatives (second or second and third), putting more 
demanding requirements on the precision of the numerical integration method used. It is 
interesting to use these two scalars (χ and τ) for characterization of the LLG solutions. Using 
the above equations one can write the lowest terms in the time development of the 
magnetization vector as 
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22

2
2

1
( ) ( ) ( )

2
ds d s ds

t t t t t
dt dtdt

χ
   + Δ = + Δ + + Δ +    M M T T N   (12) 

The tangent component of the second order correction vanishes if one uses the arc length 
instead of time in the curve parameterization. Since the vectors T, N and B form a complete 
basis, the vector M is, at each time, a linear combination of the vectors N and B. Using the 
Frenet-Serret equations one finds that 

 2

1 χ

χ χ τ

′
= − +M N B  (13) 

where the prime denotes differentiation with respect to the arc length, together with the 

condition 2

χ τ

χχ τ

′ ′
=   , which also follows from the constraint M2 = const. One sees that the 

second order condition 
22

2

d d

dtdt

 
⋅ = −  

M M
M is automatically satisfied since the parallel 

components of M and 
2

2

d

dt

M
 in the Frenet-Serret reference frame (i.e. along N) are inversely 

proportional. Alternatively, one can say that the renormalization of the magnetization 

vector fixes the component of 
2

2

d

dt

M
along M, but that it misses to fix the component along 

the direction orthogonal to M and T.  
The analytical expressions of the curvature and torsion in the absence of applied current are 

 
2 2 2
1

2 2
1

γ λ ζ
χ

γ λ

+ +
=

+
 (14) 

 
2 2
1

2 2 2
1

d

ds

γ λ ζ
τ

γ λ ζ

+
=

+ +
 (15) 

Equations (14) and (15) use re-normalized gyromagnetic ratio γ1 = γ / (1+α2), λ=αγ1 and the 
variable ζ given by the formula 

 2 2
1 1 1

1
( )

| |
d

ds
ζ γ γ λ

  
= ⋅ + + ⋅  ×   

H
m H m

m H
. (16) 

Its derivative along the trajectory can be found as 

 

2 2
1

1 22 2
1

2

1 2 1 22 2
1

( )
| |

2
( )

d

ds

d d

ds ds

γ λζ λ
ζ γ

γ λ

γ ζ
γ λ

+
= − ⋅

× +
 + + ⋅ + ⋅  +  

m m H
m H

H H
m m m

 (17) 
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The quantities m, m1 and m2 entering equations (16) and (17) are defined as 

 
SM

=
M

m ,  1 | |
×

=
×

m H
m

m H
,  2 | |

×
= ×

×

m H
m m

m H
  (18) 

It is worth noting that formulas (14) and (15) are derived for the case when macrospin is 
subjected only to an external magnetic field. This model can be easily extended to include 
the Slonczewski torque term into the LLG equation by noticing that the spin-polarized 
current torque in (1) can be formally incorporated into the precession term, which will result 
in replacement of the applied field H by the effective field HEFF: 

 EFF
SM

= − ×
M

H H J  (19) 

In a similar manner, the equation (3) can be rewritten for the case of the injected spin-
polarized current with the same effective field replacement according to formula (19). This 
methodology can be used to incorporate the Slonczewski torque into the formulas (14) and 
(15) for torsion and curvature. Due to simplicity of this replacement, it was deemed 
unnecessary to present the modified versions of formulas (14) and (15) here. 
The Frenet-Serret frame allows analysis of the magnetization curve properties, shown in 
Figs. 3 and 4 for in-plane and out-of-plane precession cases, respectively. To be able to carry 
out the comparison, it was necessary to adequate the phase portraits that are characterized 
by different precession frequencies. To do this, we separated a single precession cycle using 
the following algorithm:  
1. for each magnetization component mi, find the local minimum at time ai ;  
2. find the second local minimum at time bi ;  
3. find the estimated period as ci = bi – ai ; 
4. choose the variable with the largest ci and consider the portion of a phase portrait 

formed by the data limited by time moments ai and bi. 
To visualize the values of velocity, curvature and torsion (VCT) directly on the phase 
portrait, we faced the following difficulty. It is possible to code these quantities as colours, 
but it may be quite complicated to interpret them as, for example, the torsion can be 
positive or negative. Thus, it would be preferable to show the corresponding quantities as 
vectors. As they give the local characteristics of the curve, it would be impractical to show 
them as a tangent vector of varying length. On the contrary, plotting the corresponding 
quantities along the normal or binormal would be more understandable. It resulted that 
namely plotting VCT along the normal offered a more straightforward intuitive 
interpretation. Thus, if the local torsion is positive, it would be plotted as a vector 
pointing inside the curve; if the torsion is negative, the corresponding vector will point 
outside of the curve. To visualize the smooth variation of VCT along the phase portrait, it 
proved considerably useful to plot an enveloping curve for every calculated phase point, 
introducing only several reference vectors denoting the behaviour of the local velocity, 
curvature and torsion. 
The resulting plots allow clear analysis and interpretation of the VCT parameters. The 
largest rate of magnetization variation (velocity of the phase point) is observed at the upper 
part of the “wings” of the butterfly-shaped phase portrait (Fig. 3a, point A). This is 
understandable as the stationary solutions of the LLG include upper and lower poles of the  
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Fig. 3. Velocity, curvature and torsion of in-plane precession phase portrait calculated for a) 
H = 0.4 MA/m, J = 69mA; b) H = 0.53 MA/m, J = 64mA. The curve characteristics are 
plotted as vectors directed along the normal to the curve, not to scale with the phase 
portrait. The enveloping curve is shown as thin black line. The panels below presents the 
distribution of normalized magnetization components mi = Mi/MS (red – mX, green – mY and 
black – mZ) as well as velocity, curvature and torsion (red, green and black, respectively). 
The characteristic points are marked with letters: A) large velocity; B) large curvature; C) 
large torsion and D) small velocity and torsion 
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sphere and canted states, which are located outside of the easy magnetization plane. Thus, 
passing along the upper part of the trajectory, the phase point travels through the area well 
away from the stationary points, where the energy gradient is high, causing fast 
reorientation of the magnetization. Upon approaching to the folding point, the phase point 
travels closer to the stationary point, resulting in a much slower magnetization variation 
(Fig. 3b, point D). As the two wings of the phase portrait join at the easy magnetization 
plane, the curvature of the trajectory will increase significantly (Fig. 3a, point B), becoming 
higher for smaller separation between the wings (Fig. 3b). At the peak of the curvature and 
minimum velocity, the torsion changes sign, becoming negative after passing the point with 
maximum curvature (Fig. 3a, point C). It is worth mentioning that, because the curvature of 
the phase portrait is always positive, the period of the VCT curves constitutes a half of the 
total period of in-plane precession oscillations. Thus, one cannot use VCT plots to 
distinguish between the left and right “wings” of the magnetization curve. 
In the case of out-of-plane precession cycle (Fig. 4), the behaviour of the VCT is similar, 
because the phase point moves in the same energy landscape. When we consider the large 
precession cycle (Fig. 4a) that corresponds to one of the wings of in-plane precession cycle, 
one can observe increase of the magnetization precession velocity upon approaching the 
upper part of the cycle. The lower part, while looking quite smooth, features increase of 
curvature representing a “relic” of butterfly-shaped phase portrait corresponding to in-
plane precession. The small “splash” of torsion is also observable in this part of the phase 
trajectory. However, if the phase portrait represents a cycle set well away from the easy 
magnetization plane, the velocity of the phase point will be considerably uniform (Fig. 4b).  
The curvature becomes constant and the torsion is vanishing, proving that this phase 
portrait approaches to a circle lying in a plane, for which, as we know, the curvature is equal 
to the inverse of the radius and the torsion is zero. Namely this type of oscillations, despite 
of their modest amplitude, is most promising for microwave generator use, because the time 
profiles of its magnetization components approach the harmonic signal (Fig. 4b). 

3. Numerical methods 

A proper choice of the numerical method for the solution of the LLG equation is very 
important. The straightforward solution to obtain the most accurate results is to apply a 
higher-order numerical scheme to the equations written in one of the coordinate systems 
that ensures unconditional preservation of the magnetization vector length. However, 
depending on the complexity of the system, this approach may require many hours of 
computer time. The opposite approach consists in the choice of the simplest (first order) 
numerical method applied to the fastest-to-calculate representation of LLG – the Cartesian 
coordinates. In this way, the speed of simulations will increase up to an order of magnitude 
– but alas, the results will be completely flawed even using reasonably small values of the 
integration step h. Additional problems appear if we want to include the temperature into 
the model – the resulting LLG equation is stochastic, and correct results can be achieved 
only using numerical methods converging to the Stratonovich solution. All these details 
should be taken into account in search of a balance between calculation speed and accuracy. 
We will focus here on explicit numerical schemes, which are simpler for implementation as 
they offer direct calculation of the next point using the current value of the function. Writing 
the ordinary differential equation as 

 ( , ( ))y f t y t′ = , (20) 
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Fig. 4. Velocity, curvature and torsion of out-of-plane phase portrait calculated for a) H = 0.2 
MA/m, J = 87mA; b) H = 0.18 MA/m, J = 136mA. Similarly to Fig. 3, the thin black curve 
envelops the vectors corresponding to aforementioned characteristics of the phase portrait, 
set along the normal to the curve. The time distribution of normalized magnetization mi = 
Mi/MS (red – mX, green – mY and black – mZ) and velocity, curvature and torsion (red, green 
and black, respectively) are given in the bottom panels. 
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one can obtain the value of the derivative for the point t. Depending on the accuracy 
required, this value can be used as is or improved introducing intermediate points. 
Knowing the initial value of the function (Cauchy boundary condition), one can thus 
obtain the next point and then iterate from there. For simplicity, we will consider here 
single-step methods that require only information about a single point for the integration 
of the system.  

3.1 First order methods 

The simplest integration formula, suggested by Leonhard Euler, straightforwardly uses 
Eq. (20) to calculate the value of the function in the next point yn+1 basing on its current 
value yn:  

 1 ( , )n n n ny y hf t y+ = +  (21) 

This approach suffers from the fact that the value of the derivative in the point (yn, tn) 
does not hold for the whole integration step h, resulting in an error O(h). While it can be 
acceptable for other systems, in the case of the LLG the situation is special due to the fact 
that the first order methods are insufficient for accurate solution (see discussion after 
equation (13)). Accumulation of these errors distorts the results, leading to significantly 
different time evolution of the magnetization. This situation is illustrated in Fig. 5 
showing solutions of the LLG calculated with the Euler method and 4th order Runge-
Kutta method.  
As one can see from the figure, starting from the first peak (t ~ 115ps) the curve obtained 
with the Euler method deviates; upon reaching the first minimum (t ~ 150ps) the difference 
with the curve integrated with the Runge-Kutta method already becomes significant. It is 
necessary to emphasize that the curves shown in Fig. 5 feature different amplitude and 
frequencies – that is, the solution obtained with the Euler method is much distinct and 
should be regarded as inadequate. Due to this accuracy issue, the first-order methods 
should not be used at all for the numerical solution of the LLG equation.  
 

 
Fig. 5. Comparison of time evolution of normalized magnetization component mz = MZ/MS:  
red curve – integrated with Euler method; black curve – integrated with 4th order Runge-
Kutta method. Parameter values: applied magnetic field H = 60kA/m, injected spin-
polarized current J = 0.07A, integration step h = 0.5 ps. 
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3.2 Higher order methods 

The simplest way to improve the accuracy of the Euler method is to observe that 
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A similar second order integrator is the “modified Euler method” or “Heun method”: 

 ( )1
1 1 1 12( , ), ( , ) ( , )n n n n n n n n n ny y hf t y y y h f t y f t y+ + + += + = + +

 
 (23) 

which can be interpreted as an predictor-corrector method. It can be obtained formally 
integrating the differential equation and using then the trapezoidal method to correct the 
values of the derivative. Higher order integration methods are usually derived choosing a 
specific form of the integrator with a certain number of points and some free weights which 
are then chosen to obtain the desired accuracy. 
In the framework of the generalization proposed by Carl Runge and Martin Kutta, the Heun 
method can be classified as a second order Runge-Kutta method. It already has an 
acceptable accuracy, at the same time featuring considerable calculation speed. The 
precision of the integrator can be improved by using more intermediate points, leading to 
the most commonly-used 4th order Runge-Kutta method with total accumulated error O(h4): 
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To compare the performance of the different numerical methods and projections of the LLG, 
we calculated a dynamical diagram of the system in H-J parameter space, using a 300×300 
grid. For each pair of parameters, the LLG equation was integrated with the time step 0.5 ps, 
reconstructing a phase portrait of the system containing 50,000 points. The initial 40,000 
points were discarded to consider the steady motion of the magnetization vector without 
any transitional effects. The Hausdorff dimension was calculated for resulting 10,000 points 
using the same algorithm. The obtained dynamical diagrams are illustrated in Fig. 6. 
Therefore, the difference in calculation times will be attributed only to the choice of the 
numerical method used to solve the equation and the particular representation of the LLG. 
The comparison of calculation times is given in the table. 
As one can see from the table, the projection of the LLG equation has a pronounced 
influence on the calculation times, leading to a seven-time speed gain for the Cartesian and a 
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five-time speed gain for the stereographic projection in comparison with the LLG 
calculations in spherical coordinates. Within the same projection type, the variation of the 
calculation times is less impressive – the 1st order Euler method scores about 40-50%, and 
the 2nd order Heun method – 60-80% relative to the 4th order Runge-Kutta method.  
 

Method
Projection 

Euler Heun 4th order Runge-Kutta 

Cartesian 17m58s / (7%) 23m57s / (10%) 31m43s / (13%) 

Spherical 
1h40m38s / 

(42%) 
2h28m01s / 

(61%) 
4h1m19s / (100%) 

Stereographic 20m20s / (8%) 26m52s / (11%) 46m08s / (19%) 

Table 1. Calculation times for different integration methods and representations of LLG 
equation. The numbers in parenthesis give the (rounded) percentage, assigning 100% to 
spherical LLG calculated with 4th order Runge Kutta method (grey cell). 

Let us analyze the dynamical diagrams presented in Fig. 6. At a first glance, the results 
obtained by the Euler method are drastically different from those obtained with higher-
order methods. The IPP/OPP boundary is shifted to larger currents, but the difference does 
not consist in mere scaling – the data obtained by the Euler method features distinct 
oscillation modes (such as precession around the easy axis), which has no correspondence 
for the case of Runge-Kutta or Heun integration. One may argue that such low accuracy is 
caused by the fact that re-normalization of the magnetization vector M in the Cartesian 
system is not enough, since it does not take into account second order changes of the 
orientation of the magnetization vector. However, the very same situation takes place for the 
dynamical diagrams calculated with the Euler method using the spherical and stereographic 
projections, which reduce the number of degrees of freedom and automatically satisfy the 
condition of constant length of the magnetization vector M. 
Curiously, the distortion of the dynamic diagrams slightly improves (so that the division 
line between IPP and OPP modes is shifted to lower currents) – perhaps, because the two-
dimensional projection somewhat “lowers” the accumulated calculation error.  In any case, 
the dynamic diagrams obtained with the Euler method are definitely wrong – for example, 
LLG written in the stereographic projection displays three IPP/OPP boundaries in the 
dynamic diagram, while the calculation made with a 2nd order method clearly show that 
there should be only one such boundary.  
Therefore, comparison of accuracy and performance suggests that the Heun method is the 
most recommendable for fast and reliable solution of the LLG equation in different 
representations. To improve precision one should use the 4th order Runge-Kutta method, 
which, however, will mean at least doubled calculation times. 

3.3 Stochastic case 
The deterministic LLG equation, considered above, is applicable only for T=0K. At higher 
temperatures, the system is affected by thermal fluctuations due to the interaction of the 
magnetic moment with phonons, nuclear spins, etc. Due to this, the description of the 
magnetization dynamics becomes probabilistic, and can be found by solving the Fokker-
Planck equation for the non-equilibrium distribution of the probability P(M, t). This 
approach is very useful to magnetization reversal studies, allowing obtaining the probability  
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Fig. 6. Dynamic diagrams (based on the Hausdorff dimension DH)  calculated using 1st order 
Euler, 2nd order Heun and 4th order Runge-Kutta methods in Cartesian, spherical and 
stereographic projections. Integration step for all cases is 0.5 ps. 

of switching under a given applied magnetic field, injected spin-polarized current and finite 
temperature, which is undoubtedly important for the development of magnetic memory 
devices. At the same time, for studies of magnetization precession it is desirable to have 
access to the time evolution of the magnetization vector, studying the phase portraits of the 
system as was done in the deterministic LLG case (García-Palacios & Lázaro 1998, Sukhov & 
Berakdar 2008). To do this, one should introduce the noise term to the effective field: 

 
1 0

2
t t

S

kT
H W

VM t

α

γ µ
=

Δ
. (25) 

Here k is Boltzmann constant, T is temperature, V is the volume of magnetic particle and Δt 
is integration step for the time (referred above as h). The quantity Wt is the random variable 

www.intechopen.com



 
 Numerical Simulations of Physical and Engineering Processes  

 

150 

corresponding to a Wiener process with zero mean value and constant standard deviation. 
The noise term transforms the LLG into a stochastic differential equation (SDE) 

 
1

1 1
( ) ( ( ( ))t t

S
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dt M
α α

γ
= − × + + + × × − +

M
M H H J M M J H H  (26) 

As one can see, the current-induced torque does not contribute to the noise term, while the 
field-induced torque does. As vector products are distributive over addition, one can 
separate deterministic and noise parts of the equation 
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M
M Λ M M Δ M H M M H  (27) 

Here torque-inducing vectors Λ and Δ are the same as those introduced for equation (3). The 
general form of such a SDE can be written as a sum of a drift (deterministic) and diffusion 
(noise) terms f(y) and g(y), respectively 

 ( ) ( ) tdy f y dt g y dW= + . (28) 

This is a Langevin equation with multiplicative noise, because the noise term g depends on 
the phase variable y ≡ M. To find the increment of the function during a finite time step dt 
the equation (28) should be integrated 

 ( ( ), ) ( ( ), )
t dt t dt

t

t t

dy f y t t dt g y t t dW dt
+ +

′′ ′ ′ ′ ′ ′= +  . (29) 

The deterministic integral is easy to find as the function f(t) is a regular function. The 
situation with the stochastic term is radically different, because the function g(y) includes a 
Wiener process that is non-differentiable. In the simplest case, one can estimate the value of 
the integral by evaluating g(y) at the beginning of a small dt interval, assume it constant, and 
thus obtain the integral as multiplication Wtdt1/2, because dWt is proportional to the square 
root of the integration time step dt. Under these assumptions, one will obtain the Itô 
interpretation of the stochastic differential equation: 

 ( ) ( ( ), ) ( ( ), ) tdy t f y t t dt g y t t W dt= + . (30) 

The other option is to evaluate the diffusion term at an intermediate point belonging to the 
time interval [t, t + dt] that would give rise to an additional drift term. If one chooses the 
intermediate point to be the midpoint of the aforementioned interval which, from the 
discussion of eq. (22) gives a second order algorithm, the stochastic equation can be 
rewritten as: 

 1
2( ) ( ( ), ) ( ( ), ) ( ( ), ) ( ( ), ) tdy t f y t t g y t t g y t t dt g y t t W dt ′= + +  . (31) 

with the partial derivative ( ) ( , ) /g y g y t y′ = ∂ ∂ . The latter formula corresponds to the 
Stratonovich interpretation of the SDE, where the usual chain rule of integration remains 
valid. As equations (30) and (31) are different, they will naturally lead to distinct solutions. 
One should then use the drift term appropriate to the interpretation being used (the Fokker-
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Planck equation for the probability distribution is the same in both interpretations). The Itô 
interpretation is widely used for mathematical problems and for financial applications, in 
particular. It has the advantage that only requires information about past events. The 
Stratonovich interpretation is appropriate for physical and engineering systems (Kloeden & 
Platen, 1999), where Langevin equations are derived from microscopic models by a coarse-
graining process. Therefore, to simulate magnetization dynamics governed by a stochastic 
LLG equation, one need to ensure that: 1) the appropriate method for the solution of the 
deterministic part of the LLG (i.e. at least a second-order numerical method) will be used; 2) 
this method will converge to the Stratonovich solution of the SDE; 3) the integration will be 
performed with a proper integration step so that dt ~ dW2, requiring a smaller step for the 
case of higher temperatures; and 4) the random numbers used to generate the noise term of 
the stochastic equation will meet the requirements of a Wiener process. 
The straightforward re-mapping of the Euler method to the stochastic case is known as the 
Euler-Maruyama method (Mahony, 2006): 

 1 ( ) ( )n n t n Wn ny y f y g y+ = + Δ + Δ . (32) 

Similarly to the case of ODE, this method is easy to implement, but it gives unreliable results 
if the drift and diffusion terms vary significantly (which includes the case of magnetization 
dynamics simulations). The stochastic Euler method converges to the Itô solution (Kloeden 
& Platen 1999). To obtain the Stratonovich solution, one may introduce the additional drift 
term into the first-order numerical scheme, leading to the Milstein method (Mahony, 2006): 

 21
1 2( ) ( ) ( ) ( )( )n n t n Wn n n n Wn ty y f y g y g y g y+ ′= + Δ + Δ + Δ − Δ  (33) 

This approach allows to increase the convergence order to unity, which is still insufficient 
for the LLG SDE. As we have shown before, the numerical method should be at least of the 
second order to allow proper treatment of the deterministic LLG. Therefore, the basic choice 
also points to the stochastic Heun method (Burrage, Burrage & Tian, 2004): 

 ( ) ( )n n t n W ny y f y g y= + Δ + Δ
 1 1

1 2 2( ( ) ( )) ( ( ) ( ))n n t n n Wn n ny y f y f y g y g y+ = + Δ + + Δ +
 

 (34) 

It converges to the Stratonovich solution and is convenient for implementation as no 
additional drift term is necessary. Further precision improvement can be achieved by use of 
stochastic Runge-Kutta methods, such as second-order method (Mahony, 2006): 

2 2
3 3( ) ( )n n t n Wn ny y f y g y= + Δ + Δ

  

 3 31 1
1 4 4 4 4( ( ) ( )) ( ( ) ( ))n n t n n Wn n ny y f y f y g y g y+ = + Δ + + Δ +

 
 (35) 

The Runge-Kutta methods also converge to the Stratonovich solution and do not require 
insertion of any additional drift terms.  
The next important question is to ensure the proper characteristics of the noise. The basic 
generators of random numbers available in BASIC, FORTRAN, C or Pascal actually 
represent pseudo-random numbers, which repeat after a certain large number of steps. For 
the solution of stochastic differential equations, we should generate random numbers 
corresponding to a Wiener process, i.e., characterized by zero mean and constant dispersion. 
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One of the useful approaches is the Ziggurat method proposed by Marsaglia and Tsang 
(2000). It consists in binning of the area below the desired distribution curves with 
rectangles of the same area, the lowest of which tails to the infinity. Upon generation of an 
integer random number, its rightmost bits are counted as an index to the bin. If the random 
number fits below the distribution curve, it is used as an outcome of the algorithm; in the 
opposite case, the number becomes transformed until this condition is satisfied. By storing 
several arrays of coefficients describing the binning applied, it is possible to achieve fast 
generation of random numbers obeying the required decreasing distribution. Comparison of 
the Ziggurat method with other fast generators of random numbers show a considerable 
performance gain, requiring three-times less time than Ahrens-Dieter and 5.5 times – than 
Leva method (Marsaglia & Tsang, 2000).  
For a three-dimensional system, one should use a 3D Wiener process for the thermal field. 
This means that we should create three independent sets of random numbers modifying the 
effective field components HX, HY and HZ. However, for practical application it is compu-
tation-costly to re-generate a whole set of random numbers if one is going to calculate the 
dynamic diagrams composed of dozens of thousands of points; additionally, as thermal 
fluctuations should be taken into account from a probabilistic point of view, it will be 
necessary to average over several different realizations of the stochastic process to obtain the 
required statistical data about the system. We suggest to improve this situation by pre-
generating several sets of Wiener processes (which can be saved into a file for further use), 
and then to generate three non-repeating random numbers to pick independent stochastic 
“channels”.  This approach allows P(n,k) = n!/(n – k)! permutations for channel number n 
grouped in k = 3 subsets. In our studies, n=20 pre-calculated channels were used, giving 
6840 possible types of 3D Wiener processes. Increasing the number of pre-calculated 
channels to 50, one easily obtains over 105 possible combinations. 
 

 
Fig. 7. The dynamic diagram of macrospin reversal with temperature. The plot is averaged 
over 20 realizations of Wiener process. The characteristic phase portraits are shown. 
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To illustrate the influence of the temperature on the macrospin dynamics, we present in Fig. 
7 the dynamical diagram, averaged over 20 realizations of the stochastic process, for a 
macrospin in the parameter space (H, T). Here we focus on magnetization reversal, 
observing the change of normalized magnetization component mZ  = MZ / MS allowing  
clear distinction between up / down magnetization states. As it is natural to expect, for the 
low temperatures (T < 10K) the border between mZ = ±1 states is very sharp.  The transition 
occurs upon application of magnetic field overcoming easy axis anisotropy, which is 
responsible for “holding” the magnetization in its stationary state. With increase of the 
temperature, the thermal fluctuations intensify and help the macrospin to overcome the 
potential barrier. At a certain temperature the fluctuations are so strong that the potential 
barrier created with the easy axis anisotropy is insufficient to separate the states with  
mZ = ±1. Above this temperature the system becomes paramagnetic.  
The overall qualitative behaviour of the system as illustrated in Fig. 7 is physically sound; 
however, a quantitative picture is far from perfect. One would expect the transition 
temperature to correspond to the Curie temperature, which for the model material (Co) is 
1404K; the simulation plot shows that the loss of ferromagnetism occurs for temperatures 
about one order of magnitude higher. These unrealistic temperatures are a known problem 
with macrospin simulations (Xiao, Zangwill, & Stiles, 2005). They can be partially explained 
by the fixed length of the magnetization vector, while in real-life ferromagnetics the 
saturation magnetization decreases for increasing temperature. Therefore, the macrospin 
model is unrealistically “tough” to repolarise in the high-temperature mode, yielding an 
unrealistic Curie temperature. Indeed, if the magnetization vector is allowed to change its 
length – the approach used in the Landau-Lifshitz-Bloch equation – the simulation of the 
magnetization dynamics becomes more realistic at high temperatures (Chubykalo-Fesenko 
et al., 2006). 

4. Conclusion 

We analyzed different representations (spherical, Cartesian, stereographic and Frenet-
Serret) of the Landau-Lifshitz-Gilbert equation describing magnetization dynamics. The 
fastest calculations are achieved for the equation written in Cartesian coordinates, which, 
however, requires re-normalization of the magnetization vector at every integration step. 
The use of spherical coordinates, despite being the straightforward approach for the system 
with constant M, is laden with trigonometric functions and requires larger calculation times. 
The choice of the numerical method is also an important point for the simulations of 
magnetization dynamics. It was shown that the LLG requires at least a second-order 
numerical scheme to obtain the correct solution. Analysis of calculation performance 
suggests that the Heun method is a reasonable choice in terms of producing adequate 
results under acceptable calculation times.  
For the case of finite-temperature modelling, the LLG becomes a stochastic equation with 
multiplicative noise, which makes it important to select the proper interpretation of the 
stochastic differential equation. Since this is a physical problem, it is usually more natural 
and favourable to consider the physical system in the framework of the Stratonovich 
interpretation, where the usual chain rule is still valid. The set of numerical methods 
suitable for its solution is then narrowed down. On the other hand, since it is possible to 
convert the SDE to the Itô interpretation, it is also possible to use the Itô integration as well, 
as we are dealing with the white thermal noise. Aiming to use minimally second-order 
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method for the deterministic LLG equation, we return to the suggestion that the Heun’s 
scheme offers a reasonable accuracy. At the same time, the imposition of constant length of 
the magnetization vector (as it appears in the LLG) makes the system unrealistically stable at 
high temperatures, which results in a non-physical value of the Curie temperature. In order 
to achieve more realistic results, it is necessary to allow the variation of the magnetization 
vector length, which can be realized, for example, in the Landau-Lifshitz-Bloch equation. 
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