A Sintesis por sol gel de Bi_{1-x} (K _{0.48}Na_{0.52})_x Fe_{1-x} Nb_xO₃ CONACYT y efecto del solvente en sus propiedades

<u>**M. Ugalde-Reygadas**</u>*¹; A. Reyes-Rojas²; G. Rojas-George³

¹ Centro de Nanociencias y Nanotecnología –UNAM, Km. 107 Carretera Tijuana-Ensenada s/n Ensenada, Baja California, México ² Centro de Investigación en Materiales Avanzados CIMAV. Av.Miguel de Cervantes Saavedra 120, Complejo Ind. Chihuahua, Chihuahua, Chihuahua, México ³Catedra CONACyT - Centro de Investigación en Materiales Avanzados CIMAV. Av.Miguel de Cervantes Saavedra 120, Complejo Ind. Chihuahua, Chihuahua, Chihuahua, México ^{*}mirenyu59@gmail.com

Resumen: En el presente trabajo se sintetizaron cerámicas de Bi_{1-x}(K,Na)_xFe_{1-x}Nb_xO₃ (BKNFNO) con x=0.02 y 0.03 mediante sol gel utilizando distintos solventes : etilenglicol, y ácido cítrico. Los xerogeles se analizaron por TGA e IR; así mismo, se realizaron análisis por XRD,SEM-EDS y Raman de los polvos cerámicos. Por último, se analizaron las pastillas cerámicas mediante UV ,SEM-EDS e histéresis ferroeléctrica.

Introducción

Los materiales multiferróicos (MMF) han despertado gran interés debido a sus diversas aplicaciones como sensores, actuadores, entre otros. Uno de los MMF más prometedor, el BiFeO₃ (BFO) tiene propiedades multiferróicas que son estables a altas temperaturas (<1103 K). Por otro lado, es posible modificar las propiedades multiferróicas del BFO dopándolo con distintos elementos en los sitios A y B , de este modo puede "diseñarse" el material para aplicaciones específicas.

Objetivo

Obtener Bi_{1-x}(K,Na)_xFe_{1-x}Nb_xO₃ (BKNFNO) utilizando dos solventes distintos: etilenglicol (EG) e hidróxido de NH₄(HA).

Conclusiones

- Se obtuvieron polvos de BiFeO₃ dopado con K, Na y Nb, libres de fase secundaria, utilizando como solventes EG y EGH.
- El efecto del solvente en el tamaño de partícula indica que, a menor pH, el tamaño de partícula en el polvo es mayor. Así mismo, la sinterización de los polvos mayor promovió un crecimiento de grano notable en las muestras con EG y EGH.
- Las cerámicas que expresaron un mayor comportamiento ferroeléctrico consistieron en aquellas con x=3 % utilizando como solventes EG y EGH.
- Para reducir la fase secundaria obtenida en las cerámicas, se recomienda el crecimiento de una fase secundaria a priori, la cual pueda dar pie a la formación de BiFeO₃ en el proceso de sinterización.

Agradecemos atentamente a los técnicos Carla Campos Venegas, Daniel Lárdizabal Gutiérrez y Luis de la Torre Sanz por la ayuda brindada en la caracterización de las muestras por SEM, TGA, UV e IR, respectivamente. Así mismo, se agradece al proyecto 59 de la Convocatoria 2017 de cátedras CONACYT "Acoplamiento magnetoeléctrico de nano dispositivos monofásicos de películas ultra-delgadas".

Agradecimientos

Referencias

[1]S.M.H. Shah *et al*. Effect of Solvents on the Ferromagnetic Behavior of Undoped BiFeO3Prepared by Sol-Gel, IEEE Trans. Magn. 50 (2014).

[2]G. Rojas-George *et al.*, Multiferroic effect of multilayer low-distorted doped bismuth ferrite thin films as a function of sputtering power and crystallographic texture, Curr. Appl. Phys. 17 (2017) 864–872.

[3] I.Soibam, A. Devadatta Mani, Optimisation and the Effect of Addition of Extra Bismuth on the Dielectric and Optical Properties of Bismuth Ferrite (BFO), Mater. Today Proc. 5 (2018) 2064–2073.