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1. Introduction

Photorefractive processes [1] are described within the frame-
work of the material rate equations based on standard semiconduc-
tor physics [2]. Analytical solutions cannot be obtained for high
modulation depth m. Numerical sclution of these equations 1S gene~
rally acomplished by using a truncated Fourier expansion for all
physical magnitudes (carrier and donor concentrations and space
charge field). Moreover, it is commonly assumed that the free ca=
rrier concentration is small in comparison with the donor and acc-
eptor modulation. This procedure has been shown to yield reasona-
ble agreement with most experiments performed under continuous ex=—
citation [3-6].

An alternative approach is to solve numerically the equations
without Fourier expansion. As far as we know, only a reduced num-
ber of papers have solved numerically the material rate equations
successfully using this approach [7,8]. Therefore, it appears app-
ropiate to explore its potentialities and exploit possible advan-
tages on the Fourier expansion approach.

The purpose of this paper is to investigate the kinetics of
the photorefractive recording in the highly nonlinear regime (high
modulation depth m), by using the method of lines with a finite e-
lement collocation procedure (in Refs. [7,8] a finite difference
method is used instead).The complete recording curves and spatial
profiles have been compared to those obtained by using a limited
number of harmonics, so that the value of a truncated Fourler ex-
pansion (generally used) can be adequately evaluated.

2. Theoretical Model
We assume that the light intensity pattern is of the form:

I1=1Ic[1+mcos(Ky) ] (1)

where K = 2n/A ( A is the light grating period), m is the modula-
tion depth. The electric field is applied along y.

Following the band transport model, the response of the
photorefractive material without the photovoltaic effect, 1S well
described by the equations :

aN'/8t = (sI + B)( N - N') - yoN (2)
on/dt = 8N /48t ++3[Dap/8t + unE)/8y (3)
8(eg E)/8y = e(N = NaA - n ) (4)

where the mction of carriers is along y and the total concentra-
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tion of traps is N, the concentration of donors at any instant is
N'. The variable n is the electron concentration, Na is the initi-
al number of acceptors, p is the electron mobility and D is the
diffusion coefficient. The total electric field is E and it is gi-
ven by the sum of the applied electric filed, Ea, and Esc, which

is the space charge field. The dielectric constant is €, €0 is the

permittivity of free space, B is the thermal ionization rate and ¥
refers to the trapping coefficient, the photoionization cross
section is s. The temperature is T.

Poisson’'s equation (Eq. (4)) can be rewritten, after taking a
derivative with respect to time, using the continuity equation and
integrating with respect to variable y, as:

d(eco E)/8t = —eDdn/dt —eunE + Jo (5)

where Jo is a constant independent of the variable y, but it is a
function of time.

The boundary condition corresponding to the constraint of a
constant aplied voltage is:
i

Vo= [ E(y, t)dy (6)

0
where L is the crystal length.

Assuming periodicity in the grating vector direction, we can
express the condition given by Eq. (6) over one grating period of
length ( A ) and then, using Eq. (5), we can find Je . This func-
tion of time can be expressed (where y’ = y/A) as:

1

[ [ eun(y’ ,t)E(y ,t) ldy (7)
0

Y
Il

3. Numerical methods

The set of non linear partial differential equations we have
solved numerically is the parabolic system formed by the equations
(2), (3) and (5). Constriction given by Eq. (6) determines the va-
lue of Jo as given by Eq. (7).

We have followed the method of lines, using a finite element
collocation procedure, with second degree polynomials, which do
not depend on time, for the discretization of the spatial variable
y. The approximate solution at any time is a second order polyno-
mial over each subinterval (yn, yn+1). The coefficients of the
terms in the polynomial depend only on time. We impose the condi-
tions of continuity of the polynomial and of its first spatial de-
rivative on each extreme of the subinterval. The number of subin-
tervals we took was dependent on the value of m. The larger m, the
larger the number of subintervals. For m = 0.9 we needed 45 subin-
tervals. For m = 0.01 only 12 were required to get convergence.

The size of the time intervals we used to update the value of
the current density, J, and the corresponding value of Jo was a
small {Eaction (around 1/200) of the carrier life time (which is =
6 x 10" sez.), for the initial part of the process ( 0 to 10
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sec) and around one half of the carrier life time for the rest of
the process, i. e., until reaching the stationary state (after
about 2 seconds of total time).

Results

Recording curves for the fundamental grating corresponding to
three modulation values (m = 0.3, 0.6, 0.9) have been numerically
simulated. Results are similar to those obtained by different au-
thors either by using a truncated Fourier method (6) or a finite-
difference approach (7). Oscillations in the grating amplitude ap-
pearing for low m ( and predicted by the analytical solution of
the linearized equations) become smoother and even disappear for
high m, in correlation with the behavior observed for the phase.

The number of harmonics contributing to the overall kinetics
increases with m. For m = 0.3 three harmonics are sufficient to
satisfactorily reproduce the full growth curve, whereas 6 or even
9 are required in the case m = 0.9.

The dependence of the steady-state amplitude on m for the
first three harmonics has been determined. The supralinearity, is
even more pronounced for the second and third harmonics. The
increasing relative contribution of the harmonics with m is well
illustrated in figure 1, that also includes the point obtained by
Brost (7) for m = 1. The dependence Ei/E2 vs m follows an 1/m law
as derived from an analytical perturbative treatment.

The profiles for the donor concentration (or equivalently
charge density) are given in figure 2 for the three above m va-
lues. They correspond to the steady-state situation and incorpora-
te the contribution of all harmonics. They are markedly non-
sinusoidal. In particular, for high m they show a split structure
with two prominent maxima. In order to evaluate the adequacy of a
truncated Fourier expansion the profiles derived from the contri-
bution of the first 3 and 6 harmonics are shown for comparison in
figure 3. At least 6 harmonics are needed for a reasonable (not e-
xcellent) agreement with the full profile.

Discussion

It has been confirmed that the method of 1lines, using a
finite element collocation procedure is an useful alternative to
that based on the Fourier expansion of the physical magnitudes.
The obtained results show that for m = 0.9 at least 6 harmonics
are needed for a good reproduction of the full growth kinetics as

Fig. 1.- Log - log plot of
the ratio Ei1 divided by E2 1074
Vs. (1/m). The best fit is :
(E1/E2) =1.73*(1/m) and is
the continuos 1line. The

small squares are the cal- 3 ]
culated values. ]

E/Es

1 10 100
(1/m)
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well as of the charge profile. This is in agreement with the
conclusions based on elaborated convergence criteria using the
truncated Fourier method [6].
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