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Abstract. In this paper, a model of laminated plates called M4-5N and validated in a previous paper is 
modified in order to take into account damage at the interfaces between layers. Displacement discontinuities 
at the interfaces are considered in the model. These discontinuities are calculated by means of a damage 
model. This damage model involves non linear equations. In order to compute the model, the LATIN 
method is employed. With this method, two sub-problems are considered: one is linear and the other is non 
linear.  In the linear problem the non-linear equations of the model are linearized.  By iterating the resolution 
of each sub-problem, one obtains the solution of the global problem. The method is then applied to the 
resolution of a free edge problem of a composite laminate. Calculations prove that the model can help predict 
delamination in these laminates. 
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1 INTRODUCTION  

Delamination is perhaps the most critical failure mode in laminated structures. It is generally due to the 
stress concentration near the edges at the interfaces between layers. Thus, it is necessary to calculate the edge 
effects on the interlaminar stresses and to use a delamination criterion in order to predict delamination onset. 
In order to study delamination, a linear elastic behavior is widely assumed for stress evaluation. Besides, a 
more complex theory than the classical laminate theory is used because the interlaminar stresses must be 
calculated. 

3D finite elements can be used to calculate the interlaminar stresses. Nevertheless, these stresses are often 
singular at the edges of the laminates and the calculations do not converge to a finite value1. With this 
calculation method, a delamination criterion must involve the singularity intensity factor or the averages of 
the interlaminar stresses over a characteristic distance from the edge1,2. Another calculation method is the 
asymptotic expansion technique which can be applied in order to calculate the interlaminar stresses. The 
software CLEOPS developed by Lécuyer3 uses this last technique. Other authors use models of laminated 
plates2,4  which provide finite stress values and are easier to handle than the 3D calculations. One example of 
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these models is the M4-5N model4,5 (Multi-particle Model of Multi-layered Materials with 5 kinematic fields 
per layer for an N layer laminate) implemented in the software called DEILAM developed by Díaz et al6. The 
approximate stresses of this model are finite even at the edges and the maximum values of stresses can be 
then considered in the delamination criterion expression7. The M4-5N model is similar to Pagano’s local 
model8. Its equations are obtained by adapting the Hellinger-Reissner variational formulation9. The M4-5N 
model has already been validated for thermal elastic problems7. 

Even if the linear elastic assumption is commonly used, non linear phenomena appear at the interfaces10, 
especially for composite materials with polymeric matrixes. Díaz and Caron7 observed that microcracks 
appear at the interfaces long time before delamination initiates. When these microcracks coalesce, a 
macrocrack like delamination takes place. This phenomenon can be modeled by means of a continuum 
damage mechanics model11. 

In this paper, the interlaminar damage is calculated by adapting and introducing a damage model into the 
M4-5N model. The laminate is supposed to be made up of linear elastic layers and damageable interfaces. 
The LATIN method12 is then applied for the numerical resolution. Finally two application examples are 
considered. 

Notations 

Throughout this work, 
• superscripts i and j,j+1 indicate layer i and the interface between layers j and j+1 ( Ni ≤≤1 , 

), respectively, 11 −≤≤ Nj
• subscripts “,1”, “,2” and “,3” denote the partial derivatives with respect to x, y and z, respectively 
• bold face characters define tensors, matrices and vectors 
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• subscripts o, p, q and r indicate the components in the  space; they are assigned the values 1, 
2 and 3, 

),,( zyx

• subscripts α , β , γ  and δ  indicate the components on the  plane and are assigned the values 
1 and 2, 

),( yx

•  and σ  denote respectively the 3D displacement field and the 3D stress field, U
•  denotes the interface between layers j and j+1, 1, +Γ jj

•  denotes the first order tensor of displacement discontinuities at the interface  defined by 
the following equation: 
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• each layer i is orthotropic and the orthotropy directions are ,  and  as defined by the vectors  iL iT iN

yixiLi
eee θθ sincos += , yixiTi

eee θθ cossin +=  and zNi
ee =  

•  denotes the 4th-order tensor of compliances; it is constant in each layer. Its 
components are , with 

)(),,( zzyx SS =

opqrS 0=opqrS  in the presence of an odd number of 3 (z-direction) in the set 
opqr, 

• the second-order tensors  and  represent the in-plane and shearing compliances of layer i, 
respectively; they are defined by: 

iS i
QS
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)(zSS i
ααββαβ = , , , , 

 for 

)(2 11126116 zSSS ii == )(2 22126226 zSSS ii == )(4 121266 zSS i =

)(4 33 zSS i
Q βααβ = [ ]ii hhz +−∈ , . The scalar  denotes the normal compliance of layer i and is 

defined by:  for 

iS3

)(33333 zSSi = [ ]ii hhz +−∈ , . 
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Figure 1 – Considered laminate 

2 MODEL EQUATIONS 

By using the M4-5N model, the multi-layer (3-D object) becomes a superposition of N Reissner plates13 (a 
2-D object with N particles at each geometrical point and for each particle 5 kinematic fields are considered) 
coupled with interlaminar stresses. This model has been inspired by Pagano's work8 and already developed 
and validated in its linear elastic version4,6. The model5,6 takes into account displacement discontinuities at the 
interfaces between layers; these fields are supposed to be known. Since these discontinuity fields are given 
data, the constitutive equations of the model are linear elastic. Herein, the interface is modelled as a thin layer 
within which damage may occur and the displacement discontinuities depend on the amount of damage in 
the interface. The damage model chosen in this paper contains non linear equations and it is inspired by that 
employed by Allix and Blanchard10. 

Since the linear elastic equations of the model have already been developed, in this section the authors 
make a brief review. The model is obtained by means of adapting5,6 the classical Hellinger-Reissner 
formulation of 3-D elastic problems9 and choosing approximate stresses. The formulation yields approximate 
displacements, which are consistent with the stress approximation and are discontinuous at the cracked 
interface as desired. Using the variational properties of the formulation, we obtain the equations of the 
model. 

The M4-5N model (linear version) 

The in-plane stress components αβσ  (α,β ∈{1,2}) are chosen as linear functions of z and the 3D 
equilibrium equations lead both to shear stresses 3ασ  in the form of quadratic polynomials of z and to the 
normal stress 33σ  as third-order polynomials. The polynomial coefficients are expressed in terms of the 
following generalized internal forces4,5,6: 

- force, moment and shear resultants of layer i, respectively : 

dzzyxyxN
i

i

h

h

i ∫
+

−

= ),,(),( αβαβ σ , ( ) dzzyxhzyxM
i

i

h

h

ii ∫
+

−

−= ),,(),( αβαβ σ   (2) 

 



G. AQUINO et al. / Computation of a model of laminates 

and  dzzyxyxQ
i

i

h

h

i ∫
+

−

= ),,(),( 3αα σ

where 
2

ii
i hh

h −+ +=  

- interfacial shear and normal stresses at interfaces 1, +Γ jj  : 

),,(),( 3
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where ω∈),( yx . 
Once the approximate stresses are defined, the Hellinger-Reissner formulation helps to identify 
• the following 5N generalized displacements for ω∈),( yx : 
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• the following generalized strains for ω∈),( yx : 
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• the generalized displacement discontinuities at the interfaces for ω∈),( yx : 

),(1, yxjj +
αγ  and      (6) ),(1,

3 yxjj +γ

Using the variational properties9 of the formulation for a variation of the 3D displacements and consequently 
of the generalized displacements, one obtains the generalized 5N equilibrium equations and the generalized 
boundary conditions at the edges4,5,6. Lastly, in applying equations (5) and (6) and the variational properties of 
the formulation for a variation of the approximate stresses, one obtains the generalized elastic constitutive 
equations4,5,6 related to: 

• the in-plane force resultants in layer i ( Ni ≤≤1 ): 

i
i

i
i N

t

S
γδ

αβγδ
αβε =      (7) 

• the in-plane moment resultants in layer i ( Ni ≤≤1 ): 

ii

i

i MS
t

γδαβγδαβχ
3

12
=      (8) 

• the out-of-plane shear resultants in layer i ( Ni ≤≤1 ): 
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• the normal stresses at interface  (1, +Γ jj 11 −≤≤ Nj ) 
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where , , , 

 and  if 
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1, == ++ jjjj γγ α kj ≠ .  denotes the external surfacic force at 

the upper and lower faces of the multi-layer. 

dT

The model equations being recalled, the interfacial stresses can be determined in the laminate for given 
displacement discontinuity fields . These fields are still unknown but in the next subsection they will be 
determined. 

1, +jjγ

Interlaminar damage model 

The interfaces between layers are modelled by thin layers (e mm thick). In these “interface layers” the 3D 
strain  and stress  fields  are approximated by (x,y) fields that do not depend on z (this is justified 
by the small thickness of the interface). Thus, the displacement discontinuities are: 
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In the “interface layers” an isotropic linear elastic damageable material is considered. Its 3D constitutive 
equations provide: 
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where 0E  and 0ν  denote the Young’s modulus and Poisson’s ratio of the undamaged material,  
denotes the damage parameter of interface  (if  no damage exists, if  a delamination 
crack appears). The damage parameter represents the homogenized volume fraction of microcracks at a point 
in the interface. This parameter is calculated by the equations of classical continuum damage mechanics

1, +jjd
1, +Γ jj 01, =+jjd 11, =+jjd

11: 
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where  and  are material constants,  if the interlaminar normal stress is positive or else it is zero, 

 is the maximum value of   and  until the actual instant t . The material constant  defines 

the moment when the interlaminar stresses can initiate interlaminar damage. A small  ratio provokes a 
quick damage growth. With the model equations in the previous sub-section and equations (13) and (14), the 
displacement discontinuities can be determined for the given loads applied at the boundaries of the laminate. 

0Y cY 1)( 1, =+jjνδ
),(sup gf

t≤τ
f g 0Y

cYY /0

3 NUMERICAL RESOLUTION AND ALGORITHM 

The laminate is subjected at its boundaries to a mechanical load. Before reaching its value, the mechanical 
load takes intermediate values called load steps. In order to solve the equations for each load step, the 
LATIN (LArge Time Increment) method developed by Allix and Vidal12 is applied. The linear equations and 
the non linear equations are separated. Two sub-problems are then considered: the first is non linear 
(problem A) and the other is linear (problem B). 

In problem A, a provisional solution of problem A )~,~,~,~(~ 1,1,
,
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new provisional and more accurate solution  by means of the following 
equations which are deduced from equations (13) and (14): 
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In problem B, the provisional solution  of problem B is considered and a 
new provisional and more accurate solution  is calculated. In this linear 
problem, the non linear equations are linearized: 
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where A is a 3×3 matrix and a is a vector. Their coefficients are given by the linearization of 
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Finally, by taking into account the generalized linear equations (equilibrium and constitutive equations, 
boundary conditions) and equation (16), one obtains a linear differential equation set which is solved by 
means of a finite element technique as proposed by Díaz et al6.  

The global problem is the calculation of the solution  for each load step 
defined by the loads applied at the boundaries of the laminate. The numerical algorithm adopted in this paper 
is described in figure 2. For the first load step, the given data 

),,,( 1,1,1,1, ++++= jjjjjjjjds νταγ

0=s . 

Resolution of problem A 

Resolution of problem B 

1,~ +jjs  

1,ˆ +jjs  

<− ++ 1,1, ~ˆ jjjj ss maximum 
allowable error? 

No 

1,ˆ +jjs  

Yes 

Solution 1,1, ˆ ++ = jjjj ss  of the new load step 

Solution 1, +jjs  of the previous load step 

Task S 

 
Figure 2 – Resolution of a new load step. 

4 APPLICATION EXAMPLE 

Let us now apply the model to the resolution of a free edge problem of a symmetrical composite laminate 
(see figure 3). In this problem, the laminate is made up of unidirectional composite layers and is subjected to 
a tensile load ε  at its ends. The laminate is supposed to be infinitely long and owing to symmetries the 
problem can be reduced to the determination of the interlaminar damage in the shaded quarter section of this 
figure. 
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Figure 3 – Free edge problem of a symmetrical composite laminate  

The material in each layer is the unidirectional carbon-epoxy composite used by Díaz and Caron7,10. The 
ply thickness is mm and the ply elastic properties are: 0.13tp =

GPa153.82EL = , GPa10.61EE NT ==  
GPa5.58GGG TNLNLT ===  

0.315ννν TNLNLT ===  
where the subscripts L, T, N refer to the longitudinal, transverse and thickness directions of the individual 
ply. For the properties of the “interface layers” in these materials, a further analysis must be performed in 
order to identify them. In the present paper, the authors have chosen arbitrarily (except for the thickness) the 
following values to show the potential of the theoretical tool developed herein: 

µm3=t  (measured with an optical microscope10) 
GPa80 =E , 3.00 =ν  
5

0 107.4 ×=Y Pa, Pa 6107.4 ×=cY
Let us consider two types of laminates: ( )s90.0  and ( )s10± . 

( s90.0 )  laminate 

It is well known that in this laminate the interface 0/90 exhibits the largest edge effect. In figure 4, the 
evolution of the interlaminar shear stress  along the interface 0/90 is shown for three different load 
values. For the first load (

2,1
yzτ

065.0=ε ), the damage parameter is zero. An important edge effect is observed. 
Beyond the first load, damage appears first at the edge and propagates inside the laminate as can be seen in 
figure 5. 
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Figure 4. Interlaminar shear stress at the interface 0/90 vs. position 

                    
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.00995 0.00996 0.00997 0.00998 0.00999 0.01000  
right edge  y   (mm) 

2,1d  

 
ε=0.078 
ε=0.084 
ε=0.085 

 
Figure 5 – Damage parameter at the 0/90 interface vs. position 

Let us now analyze the edge values of the interlaminar damage and interlaminar shear stress. In figure 6, 
these values are plotted for different load values. Once the interlaminar damage reaches the 0.2 value, damage 
grows rapidly and the shear stress diminish considerably. For a 08505.0=ε  load, delamination appears 
(  at the edge). 11, =+jjd

With these calculations delamination onset in this laminate can be predicted. Nevertheless, in reality this 
laminate exhibits first intralaminar transverse cracks13 that are not considered in the model. For the next 
example, delamination really appears before any other failure mode. 
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Figure 6 – Damage parameter and interlaminar shear stress at the edge vs. load 

( sn10± )  laminate 

It is well known that mode III delaminations appear in these laminates at the 10/-10 interfaces due to the 
edge effect on the interlaminar stresses1,2,7. Besides, an important thickness effect on delamination is 
observed7: as n increases the critical tensile load that provokes delamination decreases. Let us apply our 
model to these laminates. Each set of n layers is modeled as a single layer thick (  is the ply thickness). 
In figure 7, the evolution of the interlaminar damage parameter at the edge is plotted for different loads. One 
can see that the model predicts a thickness effect on the critical load that leads to  (delamination 
onset). 
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Figure 7 – Damage parameter at the edge of the 10/-10 interface vs. load  

In order to compare the predictions of the model with experimental results, the interlaminar properties 
that appear in the model must be identified by means of a further analysis. After the achievement of this 
identification, the model could be validated and used for delamination onset prediction in other laminates. 
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5 CONCLUSION 

In conclusion, a theoretical tool has been developed to calculate the interlaminar damage in laminated 
structures. A model of interlaminar damage has been introduced into the model of laminated plates called 
M4-5N. The nonlinear equations of the model are solved by means of a numerical technique based on the 
LATIN method. Two example applications were shown and in these examples the calculated interlaminar 
damage can help predict delamination onset.  

The comparison of the predictions with experimental data will require an identification of the parameters 
that appear in the model. This comparison will help also to validate the calculations developed in this paper. 
After this, the new model developed in this paper may prove to be an accurate tool for delamination onset 
prediction in laminated structures. 
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