

Síntesis de SnO₂ Nanométrico con Morfología Macroporosa.

Sara De Los Santos¹, José Luis Mendoza², Francisco Paraguay - Delgado^{*³} Miguel de Cervantes 120, Complejo Industrial Chihuahua Chihuahua, Chih. México. C.P. 31136 Tel. 614 439 1100

•RESUMEN.

El procedimiento para preparar three-dimensionally ordered macroporous (3DOM) de SnO₂. Se sintetizaron microesferas de PMMA por

medio de una polimerización por emulsión, una vez obtenido PMMA se disperso en una solución de SnCl₄-5H₂O con la cual obtenemos una plantilla.

Al crear esta plantilla mejoro la porosidad a base de nanopartículas de SnO₂ una vez retirado las esferas del PMMA por medio de un tratamiento térmico.

•OBJETIVO.

Sintetizar y caracterizar el SnO₂ con morfología 3DOM para el incremento del área superficial.

•METODOLOGÍA.

Diagrama 1. Síntesis de PMMA.

Diagrama 2. Proceso de limpieza de PMMA y preparación de dispersión en solución.

Diagrama 3. Limpieza de portaobjetos y deposición de dispersión.

•RESULTADOS EXPERIMENTALES.

Dispersiones [PMMA con SnCl ₄ .5H ₂ O]	Rango de Φ Esferas [nm]
1 ^{er} PMMA Puro.	330 ±69 nm
1 ^{er} PMMA SL. A 1 M	395 ± 103 nm
1 ^{er} PMMA L. 0.5 M	388 ± 33 nm
3 ^{er} PMMA PL	158 ± 30 nm
3 ^{er} PMMA L. 0.5 M	107 ± 18 nm

CONCLUSIÓN.

De acuerdo a la caracterización de TGA se determinaron los parámetros factibles para la síntesis de PMMA con morfología 3DOM, rectificando con micrografías observadas por MEB Y MET. Además por DRX se determinó que el SnO2 es manométrico, demostrando que el material es macroporoso adecuado para diferentes aplicaciones.

•REFERENCIAS.

Rao, C., Liu, R., Feng, X., Shen, J., Peng, H., Xu, X., y otros. (2018). Three-dimensionally ordered macroporous SnO2-based solid solution catalysts for effective soot oxidation. En C. Rao, R. Liu, X. Feng, J. Shen, H. Peng, X. Xu, y otros, Three-dimensionally ordered macroporous SnO2-based solid solution catalysts for effective soot oxidation. (pág. 7 y 8). Jiangxi China: Elsevier.

Rui-qing Xing, L. X.-s.-f.-l.-l.-w. (2013). Three-domensional ordered SnO2 inverse opals for superior formaldehyde gas-sensing performance. En L. X.-s.-f.-l.-l.-w. Rui-qing Xing, Three-domensional ordered SnO2 inverse opals for superior formaldehyde gas-sensing performance. (págs. 2-6-8). College of Electronic Science and Engineering Jilin University, Changchun of China.: ELSEVIER.

UNIVERSIDAD **TECNOLÓGICA** DE CIUDAD JUÁREZ

