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Abstract 
Nanotechnology applications have become a reality in some materials science fields. Thermal 
properties of metallic nanofilms reported in the literature have shown to posses different values as 
compared with their bulk properties. The determination of the thermal properties plays a key role in 
the design of components and in the production of new materials. In this work a new method to 
estimate the heat capacity of metallic thin films is discussed. The analyzed thermal model consists 
in a three-layer system formed by a film/substrate/film. To estimate the heat capacity of the metallic 
film, it is required to apply a constant dc current in one metallic layer such that the three-layer 
system reaches the steady-state. In this condition, a dc current pulse is applied in the same metallic 
layer acquiring in real time the corresponding voltage and the changes of temperature as a 
consequence of the applied pulse. The three-layered model is analyzed by using coupling 
differential equations which includes the different mechanisms of heat transfer involved as a 
function of the physical properties and the geometrical parameters. Simulated results obtained from 
Au/glass/Au, Al/glass/Al, and Cu/glass/Cu systems for different electrical pulses and film 
thicknesses are discussed. These analytical results provide tools for developing better experimental 
conditions to estimate the heat capacity of metallic nanofilms. 
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1. INTRODUCTION 
The understanding of the thermodynamic properties of materials at nanoscale has become 
important in the development of new technological applications. Heat capacity provides basic 
information about the physical properties of the materials. Electronic, magnetic and structural 
properties can be studied by knowing the heat capacity parameter. Various experiments and 
models have been proposed for measuring the heat capacity: thermal relaxation method [1], thin-
film DSC nanocalorimetry (TDSC) [2] and curve fitting method (CFM) [3], among others.  
The thermal relaxation method used to measure the heat capacity in materials it has been used for 
many years. This method consists in the observation of the increment of temperature during the 
sample heating with a pulse of current applied to a system [4]. One of the most important 
advantages of this method is its simplicity, but the experimental conditions should be close to be an 
adiabatic system.  
Several theoretical models and experimental techniques have been proposed to estimate the heat 
capacity of films as a function of the temperature and the thickness in adiabatic conditions. 
However, these models and techniques do not take into account convection and radiation effects 
[5-10]. In this work, we proposed a thermal model to estimate the heat capacity in thin metallic films 
considering, both radiation and convection effects, such that heat capacity of films can be obtained 
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at room conditions and atmospheric pressure. Also, the proposed model can help us to clarify new 
experimental conditions to measure the heat capacity in metallic films with nanometric scale. 
 
2. THEORY 
Figure 1 describes the system analyzed in this work. The thermal and geometrical parameters used 
for modeling are described. A balance of energy in Figure 1 needs to obey: 
 ܳ଴ = (ܳ௦ଵ + ܳ௛ଵ + ܳ௥ଵ)௙௜௟௠ (ଵ) + (ܳ௦ଶ)௦௨௕௦௧௥௔௧௘ (ଶ) + (ܳ௦ଷ + ܳ௛ଷ + ܳ௥ଷ)௙௜௟௠ (ଷ)                          (1) 
 
where ܳ଴ =  ܳ is the power applied to the metallic film deposited under the substrate. We define ,ܫܸ
as the additional pulse of energy applied to the same metallic film in steady conditions which is 
defined as ܳ = ܳଵ[ݐ)ݑ − ܽ) − ݐ)ݑ − ܾ)] where ݑ is the step function activated in time ܽ and 
deactivated in time ܾ such that ܾ − ܽ is the pulse of time. The total energy ்ܳ = ܳ଴ + ܳ is divided 
between the two films and the substrate. The heat transfer mechanisms involved in Eq. (1) are 
defined as: ܳ௦௜ = ݉௜ܥ௣௜( ௜ܶ − ଴ܶ), ܳ௛௜ = ℎ௜ ௜ܵ( ௜ܶ − ଴ܶ) and ܳ௥௜ = ߪ௜ߝ ௜ܵ൫ ௜ܶସ − ଴ܶସ൯, which are the 
sensible heat and heat losses by convection and radiation respectively. Subscript ݅ could be 
changed by the film (1), substrate (2) and film (3). Constants ܸ, ,ܫ ݉௜, ,௣௜ܥ ଴ܶ, ℎ௜, ௜ܵ ,  ௜; are theߝ
voltage, the applied electrical current, the mass, heat capacity, room temperature, convection 
coefficient, area, emissivity of each layer of the system and ߪ, is the Stefan-Boltzmann constant. 
 

 
 

Figure 1. Schematic diagram and heat transfer mechanism of the three-layer model analyzed in this 
work. 

 
Terms of Eq. (1) can be separate in three parts, according with each component. Dividing the 
energetic contributions for each part, we can write:  
 ܳ଴ + ܳ = (ܳ௦ଵ + ܳ௛ଵ + ܳ௥ଵ)௙௜௟௠ (ଵ) + ܳ஼ଵ for film (1) ܳ஼ଵ = (ܳ௦ଵ)௦௨௕௦௧௥௔௧௘ (ଶ) + ܳ஼ଶ  for substrate (2)   (2) ܳ஼ଶ = (ܳ௦ଶ + ܳ௛ଶ + ܳ௥ଶ)௙௜௟௠ (ଷ)   for film (3) 
 
Where ܳ஼ଵ and ܳ஼ଶ are the heat conduction through the substrate (2) and film (3), respectively and 
are defined as follows: 
 ܳ஼ଵ = ௞మௌమௗమ ( ଶܶ − ଵܶ)     and           ܳ஼ଶ = ௞యௌయௗయ ( ଷܶ − ଶܶ)     (3) 

 



Constants ݇ଶ, ܵଶ, ݀ଶ and ଶܶ are the thermal conductivity, area, thickness and temperature of the 
substrate (2); ݇ଷ, ܵଷ, ݀ଷ and ଷܶ are the thermal conductivity, area, thickness and temperature of the 
film (3). Substituting each component of the heat transfer mechanisms in the system of equations 
(2) and defining a new group of variables, we obtain a first order differential equations system with 
three variables similar to the reference [11] for a bimaterial system: 
 
(ݐ)ሶଵݔ  + ܽଵଵݔଵ(ݐ) − ܽଵଶݔଶ(ݐ) = ଴ܤ + ݐ)ݑ]ଵܤ − ܽ) − ݐ)ݑ − (ݐ)ሶଶݔ [(ܾ + ܽଶଵݔଶ(ݐ) − ܽଶଶݔଵ(ݐ) − ܽଶଷݔଷ(ݐ) = (ݐ)ሶଷݔ (4)    0 + ܽଷଵݔଷ(ݐ) − ܽଷଶݔଶ(ݐ) = 0 
 
Here, subscripts 1, 2 and 3, refer to the lower film, the substrate, and the upper film of the system, 
respectively.  
Variables ݔଵ(ݐ),  are the changes of temperature with time of the different layers (ݐ)ଷݔ and (ݐ)ଶݔ
defined as follows: 
(ݐ)ଵݔ  = ଵܶ(ݐ) − ଴ܶ ݔଶ(ݐ) = ଶܶ(ݐ) − ଴ܶ ݔଷ(ݐ) = ଷܶ(ݐ) − ଴ܶ      (5) 
With the initial conditions: 

ଵ(0)ݔ  = ଶ(0)ݔ 0 = ଷ(0)ݔ (6)           0 = 0 
 
Constants in Eq. (4) are defined as: 
 ܽଵଵ = ℎଵ ଵܵ݉ଵܥ௣ଵ + ଵߝ ଵܵߪ ௥ܶଵ݉ଵܥ௣ଵ + ݇ଶܵଶ݀ଶ݉ଵܥ௣ଵ ;       ܽଵଶ = ݇ଶܵଶ݀ଶ݉ଵܥ௣ଵ ଴ܤ       ; = ܳ଴݉ଵܥ௣ଵ ଵܤ          ; = ܳଵ݉ଵܥ௣ଵ ;   ܽଶଵ = ݇ଶܵଶ݀ଶ݉ଶܥ௣ଶ + ݇ଷܵଷ݀ଷ݉ଶܥ௣ଶ ;        ܽଶଶ = ݇ଶܵଶ݀ଶ݉ଶܥ௣ଶ ;           ܽଶଷ = ݇ଷܵଷ݀ଷ݉ଶܥ௣ଶ                    (7) 

 ܽଷଵ = ℎଷܵଷ݉ଷܥ௣ଷ + ߪଷܵଷߝ ௥ܶଷ݉ଷܥ௣ଷ + ݇ଶܵଶ݀ଶ݉ଷܥ௣ଷ ;                ܽଷଶ = ݇ଷܵଷ݀ଷ݉ଷܥ௣ଷ 

 
In the parameters ܽଵଵ and ܽଷଵ are included the radiation effects and the temperature is defined in 
absolute values. Thus, the constants ௥ܶଵ and ௥ܶଷ defined in Eq. (7) as 
 ௥ܶଵ = [( ଵܶ + 273) + ( ଴ܶ + 273)][( ଵܶ + 273)ଶ + ( ଴ܶ + 273)ଶ]  (8) 

 ௥ܶଷ = [( ଷܶ + 273) + ( ଴ܶ + 273)][( ଷܶ + 273)ଶ + ( ଴ܶ + 273)ଶ]   
 
Applying the Laplace transform method (LTM) and solving for ଵܺ(ݏ), ܺଶ(ݏ) and ܺଷ(ݏ) with the 
Wolfram Mathematica* Ver. 7 software, Eqs. (4) can be transformed to: 
 

ଵܺ(ݏ) = ݏ)] + ܽଶଵ)(ݏ + ܽଷଵ) − ܽଶଷܽଷଶ][ܤ଴ + (݁ି௔௦ − ݁ି௕௦)ܤଵ]ݏ)]}ݏ + ܽଵଵ)(ݏ + ܽଶଵ) − ܽଵଶܽଶଶ](ݏ + ܽଷଵ) − ݏ) + ܽଵଵ)ܽଶଷܽଷଶ} 
 



ܺଶ(ݏ) = −ܽଶଶ(ݏ + ܽଷଵ)(ܤ଴ + (݁ି௔௦ − ݁ି௕௦)ܤଵ)ݏ{[ܽଵଶܽଶଶ − ݏ) + ܽଵଵ)(ݏ + ܽଶଵ)](ݏ + ܽଷଵ) + ݏ) + ܽଵଵ)ܽଶଷܽଷଶ} 
(9) ܺଷ(ݏ) = −ܽଶଶܽଷଶ(ܤ଴ + (݁ି௔௦ − ݁ି௕௦)ܤଵ)ݏ{[ܽଵଶܽଶଶ − ݏ) + ܽଵଵ)(ݏ + ܽଶଵ)](ݏ + ܽଷଵ) + ݏ) + ܽଵଵ)ܽଶଷܽଷଶ} 

 
Equations (9) were numerically solved to obtain the thermal profiles in the system according to the 
initial conditions proposed. The profiles of temperature with time were obtained by applying the 
inverse Laplace transform. Each one of the three solutions is composed by tenths of terms and is 
not shown in this manuscript but the thermal behavior in the three-material system can be predicted 
as exponential functions according to: ݔଵ(ݐ) = ଵ݁ି௧/ఛభܣ + ଶ݁ି௧/ఛమܣ + (ݐ)ଶݔ ଷܣ = ଵ݁ି௧/ఛభܤ + ଶ݁ି௧/ఛమܤ + (ݐ)ଷݔ ଷ                                                (10)ܤ = ଵ݁ି௧/ఛభܥ + ଶ݁ି௧/ఛమܥ +  ଷܥ

 
The exponential functions in Equations (10) involves two times constant ߬ଵ y ߬ଶ. These constants 
represent the relaxation time for the film and for the complete system respectively. However, the 
plot of each one under different conditions will be discussed in the Results section. 

 
3. RESULTS 
Table 1, shows the bulk physical properties and dimensions used to simulate the thermal profiles in 
the three-material system. All simulations were realized varying these parameters: film thickness, 
substrate thickness, heating time pulse and the power applied to the three-layer system. 
  
Table 1. Physical bulk properties and geometrical parameters used in thermal profiles simulations 
for the three-layer system. 
 

Material Cp (J/kg-K) k (W/m-K) S (mm2) d  (kg/m3) 
Au 129 317 10×25 30-200 nm 19300 0.02 
Al 900 238 10×25 100 nm 2700 0.05 
Cu 385 386 10×25 100 nm 8930 0.03 
Vi 837 0.96 10×25 0.1-2 mm 2750 0.92 

 
Typical simulated temperature profiles are presented in Figure 2. In these figure the bimaterial 
system [12] is compared with the three-material system. For the bimaterial case, two thermal 
profiles are show corresponding to the film (upper) and for the substrate (lower). The convection 
coefficient value used in all simulation was always 19.9 W/m2°C. This magnitude of the coefficient 
represents typical value for natural convection [13]. Both profiles were obtained under the same 
conditions. From this figure it can be see that the two systems reach the steady state after 250 s. 
The temperature in steady state in the bimaterial system is higher than the obtained with the three-
material system, indicating that the global coefficient in the three-layer system is higher than for the 
bimaterial system.  
Figure 3 present different temperature profiles with different powers applied to the three-material 
system. A linear increment on the temperature of the thermal profiles was found with the increase of 
the power applied in the three-layer model. 
 



0 50 100 150 200 250 300
0

2

4

6

8

10

12

14

16

 X
film-Au

 [11]

 X
glass

 [11]

 X
1
(t) 

 X
2
(t) 

 X
3
(t) 

 

 

bimaterial system

Au/glass/Au (0.5 m/1 mm/0.5 m)
Q

0
 = 0.0985 W

h= 19.9 W/m2°C

X
i (

°C
)

time (s)

Three-material system

 

0 100 200 300 400 500 600
0

2

4

6

8

10

Q
0
=0.1 W, h

1
=h

2
=19.9 W/m2°C

Q
0
=0.08 W, h

1
=h

2
=19.9 W/m2°C

Q
0
=0.05 W, h

1
=h

2
=19.9 W/m2°C

Q
0
=0.02 W, h

1
=h

2
=19.9 W/m2°C

 

X
i (

°C
)

time (s)

 X
1
(t)

 X
2
(t)

 X
3
(t)

Q
0
=0.01 W, h

1
=h

2
=19.9 W/m2°C

Au/glass/Au (0.5 m/1mm/0.5 m)

 
Figure 2. Theoretical temperature profiles 
simulated with the three-layer system 
Au/glass/Vi.  

Figure 3. Heating profiles for the Au/glass/Au 
system for different applied power. 

 
When the system reaches the thermal stabilization, a heating pulse is applied over the first signal of 
the three-material system. Figure 4 shows the thermal profiles obtained for different heating pulses. 
The heating pulse applied in the three-material systems was 1, 5 and 10 s. An exponential decay 
was found in the simulated profiles. All profiles reach the stationary state after 300 s approximately.   
Heating profiles for different applied power are presented in Figure 5. The applied power in each 
three-layer system was 0.2, 0.5 and 1 W. These profiles reach the thermal stabilization once again 
after 300s. 
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Figure 4. Theoretical thermal profiles simulated 
with different heating pulses. All simulations 
reach the stabilization at 300 s approximately.  

Figure 5. Heating profiles for different applied 
power pulses. The stationary state is reached 
after 300 s approximately. 

 
Figure 6 shows the exponential fitting of the thermal profiles by using the Equations 9 in order to 
obtain the relaxation constant time of the complete system ߬ଶ. This relaxation time constant was 
found when the system reaches the 63.2% of the stationary state. The value ߬ଶ found for this case 
was 58.44 s. This value does not change with the time of the heating pulse and with the power 
pulse applied to the three-material system. The Figure 7 presents the time constant behavior for the 
three-layer system as a thickness substrate function. The time constant increases linearly with the 



thickness of the substrate in the three-material system due to increase of amount of mass in the 
substrate.  
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Figure 6. Fitting for the three-material thermal 
profiles using the Equations 9. The ߬ଶ found for 
this case was 58.44 s. 

Figure 7. Relaxation time constant ߬ଶ behavior 
varying the glass substrate thickness. The 
thermal profiles were simulated under the same 
conditions. 

Figure 8 shows the thermal profiles during the first milliseconds of heating of the three-material 
system. In this short time we assumed that the substrate remains at the same temperature and the 
heating pulse does not affect the substrate. When these system conditions are given a new 
relaxation time constant of the film ߬ଵ can be found. This time constant represent the first instants of 
the film heating. Adjusting the thermal with Equations 9, we found a relaxation time constant of ߬ଵ =  for the Au/glass/Au analyzed. The Figure 9 shows the relaxation time constant  ߬ଵ ݏ݉ 0.253
varying the film thickness. A linear behavior was also found between the relaxation time constant  ߬ଵ  
and the thickness of the film.    
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Figure 8. Thermal profiles of the first 2 ms of 
heating in the three-material system showing the 
relaxation time constant  ߬ଵ.  

Figure 9. Relaxation time constant  ߬ଵ as a 
function of the thin film thickness during the first 
2 ms in the three-material system. 

 
Table 2 shows the simulate results of  ߬ଵ and  ߬ଶ obtained for different three-material systems: 
Au/glass/Au, Al/glass/Al, Cu/glass/Cu. The relaxation time constant  ߬ଵ and  ߬ଶ are presented as a 
function of the film thickness. All three-material systems were simulated under the same conditions. 



Table 2 shows that the  relaxation time constant ߬ଶ are independent of the film material analyzed 
and independent of the film thickness given that its mass is more smaller than the mass of the 
substrate. When the first two milliseconds is analyzed in the three-material system, ߬ଵ changes with 
the film thickness and  the three metallic films analyzed shows different behaviors in the relaxation 
time constant.  
 
Table 2. Time constants (߬ଵ and ߬ଶ) obtained for different three-material systems. The systems 
analyzed were simulated using the same conditions: ݀ଶ = 1  ݉݉,  ܳ଴ = 0.01 ܹ, ܳଵ = 0.02 ܹ, ℎଵ =ℎଷ = 19.9 ௐ௠మ    .ܥ°

Film 
thickness 

(nm) 

Au/glass/Au Al/glass/Al 
 

Cu/glass/Cu 
 ૚ (ms)࣎ ૛ (s)࣎ ૚ (ms)࣎ ૛ (s)࣎ ૚ (ms)࣎ 

 ૛ (s)࣎
 

30 0.076 58.43 0.074 58.43 0.105 58.43 
50 0.126 58.43 0.124 58.43 0.176 58.43 
100 0.253 58.44 0.248 58.44 0.352 58.44 

 
By knowing the initial slope of the heating (or cooling) profile corresponding to the film (߬ଵ) it is 
possible to estimate the specific heat of the metallic film if we consider that ܳ =   :then ,ݐ∆/ܶ∆௣ܥ݉
 

௣ܥ     = ொ௠(∆்/∆௧)      (11) 

4. CONCLUSIONS 
We present a thermal model to simulate the thermal profiles in three-material systems. This model 
allows obtaining the relaxation time constant for the thin film and the relaxation time constant for the 
complete system. These results are the first steps in the development an experimental method to 
obtain ߬ଵ and ߬ଶ. The experimental challenge is to implement a method to generate a micropulse 
(about 2 ms) and acquire the thermal profiles with high resolution (about 1 data per microsecond). 
From these experimental results we will be able to estimate the heat capacity of nanofilms by 
knowing the thermal profiles of the three-layer systems.  
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