JORNADAS ACADÉMICAS 2019

Magnetostrictive effect of Fe₈₁Al₁₉ alloys doped with Terbium

J. S. Uribe-Chavira¹, M. C. Grijalva-Castillo², C. R. Santillán-Rodríguez¹, R. J. Sáenz-Hernández¹, J. A. Matutes-Aquino¹

^{1.} Centro de Investigación en Materiales Avanzados, S.C., Materials Physics Department, Chihuahua, México.

^{2.} CONACYT – Centro de Investigación en Materiales Avanzados, S.C., Materials Physics Department, Chihuahua, México.

In recent years, there has been strong interest in producing low-cost magnetostrictive materials for various industrial applications, such as stress **1. Introduction** and torque sensing, energy harvesting, structural health analysis, among others. Among the materials that exhibits a moderate magnetostriction value at low-cost there is two systems of interest: Fe-Ga and Fe-Al. The Galfenol shows moderate magnetostriction in polycrystalline form and recently has been reported a drastically improvement in the magnetostriction coefficient of polycrystalline Galfenol doped with rare earths such as Tb [1-3] and Dy [4]. This raises the question if using similar technique with Fe-Al alloys should produce similar results. Therefore, in this work we have studied the magnetostrictive coefficient in Fe-Al alloys doped with Tb.

e

2. Experimental

(110)

3. Results

3.3. Microstructure evolution 3.4. EDS X=0100 µm 100 µm 100 μm x=0.018 50 µm 50 µm 200⁻µm x=0.019 200⁻µm 50 µm 50 µm x=0.025

-	-	(220)	ΔΙ					Table 1	. Composi	tions	
ty (a.u.)		(2)					obtained by ICP-OES analysis.				
		(4)	$(0) \setminus (2)$	(211) (220)		(310)	Fe	at %	Δlat %	Th a	t %
	-	The bill of the day of the state of the stat		4∠∠) (4	40)	(620) 	 ←	82 571	17 429	10 d)
nsi							`	81 530	18 452		18
l tel				A			、	81 289	18 692		19
<u> </u>				٨		and a second	、 ←	81 418	18 557		25
	-		٨	٨			、 ←	81 938	18.036		25
				۸				<u>81 671</u>	10.000	0.0	20
								01.071	10.294	0.0	55
3	60 40	50 60	70 8 2 0 (°	0 90	100 1	10 120)				
Figu	Jre 1. D	iffraction	pattern) s of the	alloys.	The up	per	directio	ons corresp	bond	to th
BCC	CA2 pha	ase (α –Fe	Al) and	lower di	irectior	ns for c	ubic	D03 ph	ase (Fe ₃ Al)).	
3.2	. Rietv	eld refin	ement								
Full	Prof Su	ite [5]. Ps	eudo-Vo	pigt fund	ction w	as used	d. Da	ata usec	l: 2.911 Å	(α –)	FeAl
[6]	and 5.7	91 A (Fe ₃	AI) [7].		2	0/ 5					
		X	Rwp	Rexp	χ ²	% α-৮	eAI	% Fe	e ₃ AI		
		0	3/	34.6	1.14	88.0	14 `2	11.	96		
		0.018	28.3	27.4	1.00	91.0)3)1	0.5 1.2	57 10		
		0.019	24.4 20.6	20.0	1.41	00.0	7	15. 6.6	19		
		0.025	29.0	29.5	1.02	93.5	57 57	6.3	22		
		0.020	39.2	38.7	1.12	93.7	'0	6 3	30		
Tab	le 2. W	eighted p	rofile fac	ctor (Rw	α). Εχρ	ected f	acto	or (Rexp). Goodnes	ss of f	it an
		ph	ase prop	portion	for eac	h Rietv	eld r	refinem	ent.		
	Lattice para			rameter	imeter (Å)		V		G1		
	X	C	α-FeAl		Fe ₃ Al			Fe ₃ Al	Texture (200)	
	0	2	2.914	5.8	11	0.267	7	0.151	-1.83		
	0.0	18 2	.910	5.8	5.839		3	0.265	0.69		
			915 5.8			0.143					
	0.0	19 2	.915	5.8	18	0.143	5	0.389	-2.36		
	0.0	19 2 26 2	915 911	5.8 5.8	18 41	0.143	5	0.389 0.335	-2.36 0.04		
	0.0	19 2 26 2 27 2	.915 .911 .911	5.8 5.8 5.8	18 41 00	0.143 0.176 0.167 0.204	5 7 F	0.389 0.335 0.381	-2.36 0.04 -1.39		

$Fe_{81}AI_{19}Tb_{0.035}$ alloy.						
Alloy	Grain Class					
x=0	EG					
x=0.018	EG+CG					
x=0.019	CG					
x=0.025	EG+CG					
x=0.026	CG					
x=0.035	EG+CG					
Fable 4. Grair	n class of each					
loy: Equiaxial	and Columnar					

BSE

2 µm

ΑΙΚα

2 µm

Fe Kα

2 μm Tb Lα

Table 3. Refined parameters for each Rietveld refinement.

	-0.5 -1.0 -1.0	 x=0 ∨ x=0.025 x=0.018 ∧ x=0.026 x=0.019 • x=0.035 									
d	-10000-7500 -5000 -2500 0 2500 5000 7500 10000 0 Applied magnetic field H (Oe) A	2500 5000 7500 10000 pplied magnetic field H (Oe)									
	Figure 4. (a) Hysteresis Loops of samples of the $Fe_{81}Al_{19}Tb_x$ (x=0, 0.026 and 0.035 alloys, and (b) total magnetostriction curves of the alloys ($\lambda_T = \lambda_{\parallel} - \lambda_{\perp}$).										
	4. Conclusions Doping the base system $Fe_{g_1}AI_{19}$ with minimal amounts of terbium produces an increase in magnetostriction. In the best case, from 33 ppm for the alloy without terbium to 84 ppm for $Fe_{g_1}AI_{19}Tb_{0.026}$. Two important aspects that helps in the improvement of magnetostriction in this type of systems are; the simultaneous existence of the phases A2 and D03, as well as the presence of columnar and equiaxal grains or only columnar grains favors, to a lesser or greater extent, respectively, to the texture formation. The texture was formed in direction (200) as reflected in the Rietveld refinements, which, was obtained directly through the process of melting by electric arc furnace without the need of a thermal treatment.	 5. References [1] L. Jiang, et al, (2013) Applied Physics Letters. 102, 222409. [2] T.I. Fitchorov, et al, (2014) Acta Materialia 73, 19. [3] W. Wei, et al, (2015) Journal of Alloys and Compounds 622, 379. [4] T. Jin, et al, (2014). Scripta Materialia 74, 100. [5] Rodríguez-Carvajal, J. (1993). Physica B: Condensed Matter, 192(1-2), 55-69. [6] Buschow, K. J., & Engen, P. G. (1983). Journal of Magnetism and Magnetic Materials, 38(1), 1-22. [7] Popiel, E., et al, (1989). Journal of the Less Common Metals, 146, 127-135. 									