JORNADAS ACADÉMICAS 2019

M. en C. Jose Luis Mendoza Castellanos. Director de tesis: Dr. Francisco Paraguay-Delgado Laboratorio: Síntesis de óxidos de semiconductores, Departamento de Física de materiales CIMAV, Chihuahua, Chih.

Síntesis de SnO₂ en morfología 3DOM

RESUMEN

Se obtuvo PMMA por medio de polimerización por emulsión. Se preparan dispersiones de PMMA con soluciones de SnCl4-5H2O a diferentes concentraciones. Las dispersiones formuladas, se depositaron sobre portaobjetos formando recubrimientos. Se secaron y se sometieron a tratamiento térmico, obteniendo finalmente la morfología 3DOM de SnO2. Se caracterizó por MEB, MET, EDS, DRX, BET y FTIR.

	Área superficial	Diámetro PMMA (nm)	Diámetro de poro 3DOM	Perdida de diámetro	Sn	Ο	Cl	% Otros (Al, Si,	# átomos Sn	# átomos O	#atomos de O/atomo de
RECUBRIMIENTOS	(m²/g) 3DOM		(nm)	(%)	%	%	%	C, S, Na, Mg)	(base 100 gr)	(base 100 gr)	Sn
P1 TS1MST T450	-	273+25	-	-	80.6	18.3	0.6	0.4	0.7	1.1	1.7
P1 TS1M90 T450	-		-	-	81.2	17.6	0.6	0.4	0.7	1.1	1.6
P1 TS1M120 T450	-		-	-	81.2	17.8	0.5	0.4	0.7	1.1	1.6
P1 TSC30T T450	-		238+22	13	75.4	20.2	0.1	3.9	0.6	1.3	2
P1 TSCAmT T450	-		-	-	66.4	24.8	0.5	8.3	0.6	1.6	2.8
P1 TSR2CT T450	-		-	-	-	-	-	-	-	-	-
P1 TS0.5M T400	-		-	-	78.7	20.6	0.7	0	0.7	1.3	1.9
P2 TS0.5ML T400	-	494+59	-	-	73.8	22.7	0.6	2.9	0.6	1.4	2.3

Diametro de esfera (nm) Fig. 1. a) Histograma del diámetro de la síntesis 2, b) micrografía MEB de PMMA

P2 TS0.5MSL T400	81		312+35	37	74	22.5	0.5	3	0.6	1.4	2.3
P2 TS0.5M T400	-		-	-	86.3	11.7	2	0	0.7	0.7	1
P3 TS0.5M T400	-	120+15	91+13	24	-	-	-	-	-	-	-
P4 TS0.5M T400	87	252+19	212+34	16	75.8	23.5	0.8	0	0.6	1.5	2.3
P5 TS1.5M T500	-	360+14	-	-	-	-	-	-	-	-	-
P6 TS1.5M T500	-	415+20	-	-	-	-	-	-	-	-	-

Fig. 2. Análisis térmicos (TGA) del PMMA y

Fig. 5. Micrografías del recubrimiento P2 TS0.5M T400-0.1. a) micrografía por microscopia óptica, b) micrografía por MEB.

ANIV FRS/

Relacion

Fig. 6. a) Micrografía por MET del recubrimiento P1 TSC30 T500, b) Patrón de difracción (SAED).

Fig. 7. a) DRX, b) BET, c) FTIR de los recubrimientos antes y después del tratamiento térmico.

CONCLUSIONES

- 1. Un tratamiento térmico a partir de los 400°C transforma el SnCl₄-5H₂O en SnO₂ y elimina las microesferas de PMMA, formando la morfología 3DOM.
- 2. Diámetros de esfera menores incrementan el área superficial del recubrimiento.

AGRADECIMIENTOS

(ref) by 60 - a) = 6.9 + 1.2 nm

Al CIMAV y al CONACYT por el uso de sus instalaciones y la beca para realizar esta investigación. A mi familia, al Dr. Francisco Paraguay-Delgado y a mis compañeros por todo el apoyo mostrado.

CLAVE

- P# Numero de síntesis de PMMA
- TS#M concentración de tetracloruro de estaño pentahidratado
- T# Temperatura del Tratamiento
- -# Volumen depositado en portaobjetos.
- 3DOM 3-Dimensional Ordered Macroporous.- Morfologia que forma macroporos interconectados [3], incrementando el área superficial [4-8].

BIBLIOGRAFIA

- https://pubs.rsc.org/en/content/articlelanding/2013/cs/c2cs35317b#!divAbstract
 Soledad-Rodríguez B. E. Rev. Tekhné. Vol. 20, Núm 2 (2017):003-022
- 3. J. Wang et al. Microporous and Mesoporous Materials 208 (2015) 93-97
- 4. F. Gu et al. Sensors and Actuators B 245 (2017) 1023–1031
- 5. Z. Cai, J. Teng et al. J Langmuir (2011) 27, 5157–5164
- 6. A. Sutti et al. Sensors and Actuators B 130 (2008) 567–573
- 7. R.-q. Xing et al. Sensors and Actuators B 188 (2013) 235–241
- 8. M. Curti et al, Materials Research Bulletin 101 (2018) 12–19

Fig. 8. Histogramas y micrografías por MET del Diámetro de partícula. a) SnO₂ obtenido a 400°C, b) recubrimiento P2 TS0.5M T400 – 0.1.