ZIRCONATO DE LITIO PROMOVIDO CON SODIO COMO ABSORBENTE DE CO$_2$ A ALTA TEMPERATURA

TESIS
QUE PARA OBTENER EL GRADO DE
MAESTRO EN CIENCIA DE MATERIALES

PRESENTA:

VANESSA GUADALUPE GUZMAN VELDERRAIN

DIRECTOR DE TESIS:

DRA., VIRGINIA H. COLLINS MARTINEZ
DR. ALEJANDRO LÓPEZ ORTIZ

CHIHUAHUA, CHIH. MARZO 2009
RESUMEN:

El desarrollo industrial en la época actual hace uso principalmente de los combustibles fósiles ya sea en su estado sólido, líquido o gas. Lo que en estos últimos años a causado controversia puesto que la tierra ha estado sufriendo cambios constantes y extremosos en el clima como resultado del aumento de las concentraciones de los gases invernadero principalmente del dióxido de carbono (CO$_2$), dado a que su concentración cada vez es más elevada los países han tenido que tomar medidas para reducir las emisiones; una de esas medidas es el Protocolo de Kyoto. También han hecho uso de materiales capaces de capturar el CO$_2$ tanto como naturales y sintéticos. Los materiales sintéticos son absorbentes sólidos capaces de absorber el CO$_2$ a altas temperaturas (400-800°C), haciendo los procesos de generación de energía más eficientes, algunos de estos materiales son los zirconatos tanto de Litio (Li$_2$ZrO$_3$) como de Sodio (Na$_2$ZrO$_3$) o mezclas de ambos (LixNa$_x$ZrO$_3$). El presente trabajo tiene como objetivo sintetizar por medio del método reacción en estado sólido el zirconato de litio y doparlo por impregnación incipiente con nitrato de sodio (NaNO$_3$) en diferentes porcentajes (%w) para desarrollar un nuevo absorbente para CO$_2$ de alta temperatura, así como también caracterizar y evaluar estos materiales para determinar si el material dopante tiene un efecto positivo en el mejoramiento de las propiedades del Li$_2$ZrO$_3$ como material absorbente de CO$_2$. Los resultados de la síntesis del Li$_2$ZrO$_3$ dopado con Na$_2$O mostraron que al ser dopado el material tiene un efecto positivo tanto en su cinética como en la capacidad de absorción. Los resultados de DRX muestran que al incrementar la cantidad de Na$_2$O en las muestras se hace más presente la fase cristalina del Na$_2$ZrO$_3$, también se observa la LiNa-5 es la que presenta menor cantidad de fase cristalina del Na$_2$ZrO$_3$, SEM muestra una morfología similar para todas las muestras y que al someterlas al proceso de absorción/regeneración estas cambian su morfología, en la evaluación como absorbente por TGA exhiben que la muestra que mejor trabaja es la muestra dopada con 5%w de Na$_2$O ya que es la que presenta una mayor capacidad de absorción de CO$_2$ y tiene un el mejor balance entre la cinética de absorción y la regeneración. Por esta misma prueba se realiza un análisis modulado de alta resolución para determinar las temperaturas mínimas de absorción y regeneración encontrando que son 469°C y 698°C respectivamente, así mismo las pruebas preliminares de la muestra LiNa-5 a multiciclos de absorción/regeneración sugieren que este material presenta una notable estabilidad térmica a partir del segundo ciclo. Se realizó una segunda serie de las muestras para corroborar si los datos obtenidos eran repetitivos y estos mismos mantenían la misma cinética de reacción.
ABSTRACT

Today’s industrial development uses fossil fuels in all of their different states such as liquid, solid and gas. Nowadays these uses have been causing controversy due to the damage that it causes to the earth, such as global warming, and the augmentation in the (CO₂) concentrations, these concentrations have been getting worse as time goes by, some countries have taken actions in order to reduce those gases like the Kyoto protocol. Also, a lot of natural and synthetic materials have been created to capture the CO₂ particles. The synthetic materials are solid absorbers capable of capturing the CO₂ at high temperatures (400-800°C), making the energy generating processes more efficient, some of these materials are the zirconates like the lithium (Li₂ZrO₃) and sodium zirconate (Na₂ZrO₃) or a mix of both zirconates (LixNaₓZrO₃). This thesis is about synthetizing the lithium zirconate by a solid state reaction and dope it by the incipient impregnation technique with sodium nitrate (NaNO₃) at different concentrations in order to develop a new absorbent to high temperature CO₂ as well as characterize and evaluate such materials to determinate if the doping material has a positive effect in the Li₂ZrO₃ properties as a CO₂ absorbent.

The results of the Li₂ZrO₃ synthesis doped with Na₂O showed a positive reaction both in kinetic and absorption capability. The DRX results demonstrate that by increasing the Na₂O in the samples the crystalline phase of the Na₂ZrO₃ increases too, also the LiNa-5 presence increases in the Na₂ZrO₃ crystalline phase, the SEM shows a similar morphology in all the samples and once that those samples have been submitted to the absorption/regeneration process their morphology changes, in the TGA absorption test proves that the sample that worked better is the one doped with 5%w of Na₂O showing a better absorption capability of CO₂ and it also has a better balance in absorption and regenerating kinetic. By this same test a modulate analysis of high resolution is made in order to determinate the absorption and regeneration minimum temperatures finding that they are 469°C and 698°C respectively. The preliminary test of the LiNa-5 sample at absorption/regeneration multicycles suggest that this material showed a notable thermal stability from the second cycle on.

A second trial of all these tests have been ran to corroborate all the obtained results in order prove that they are the same and have the same kinetics reaction.
Contenido
RESUMEN: .. 2
ABSTRACT .. 3
Índice de Figuras .. 6
Índice de Tablas ... 6
AGRADECIMIENTOS .. 7
CAPITULO 1: INTRODUCCIÓN .. 8
EFECTO INVERNADERO .. 9
EFECTOS DE LOS GASES DE INVERNADERO .. 10
CALENTAMIENTO GLOBAL ... 11
¿QUE ES EL DIOXIDO DE CARBONO (CO₂)? ... 12
6 CO₂ + 6 H₂O → C₆H₁₂O₆ + 6 O₂ (1) .. 12
C₆H₁₂O₆ + 6 O₂ → 6 CO₂ + 6 H₂O + energia (2) .. 12
CARACTERÍSTICAS DE CO₂ FÍSICAS Y QUÍMICAS .. 13
Tabla 1. Propiedades Físico-Químicas del Dióxido de Carbono 13
ESFUERZOS POR REDUCIR LAS EMISIONES DE GASES DE INVERNADERO 14
MEDIDAS PARA REDUCIR LAS EMISIONES DE LOS GASES INVERNADERO 15
FUENTES RENOVABLES DE ENERGIA .. 16
Biocombustibles: ... 16
Hidroelectricidad: ... 16
Energía Eólica: .. 16
Energía Solar: ... 17
Energía Nuclear: .. 17
SECUESTRACION .. 17
SISTEMAS DE CAPTURA DE CO₂ ... 17
METODOS DE SEPARACION Y CAPTURA DEL CO₂ .. 18
Membranas: .. 19
Destilación Criogénica .. 20
ADSORCIÓN .. 20
Adsorción Física .. 21
Adsorción Química ... 21
ABSORCIÓN .. 21
Absorción Química ... 21
Base Amina .. 22
Adsorción Mediane Ciclos de Presión (PSA) .. 23
Adsorción Mediane Ciclos de la temperatura (TSA) .. 23
Confinamiento Oceánico ... 24
USOS DEL CO₂ ... 24
NUEVAS TENDENCIAS EN LOS USOS DEL CO₂ .. 25
Conversión de CO₂ en Combustibles ... 25
CO₂ a Metanol ... 26
CO₂ a Acido Fórmico .. 27
CO₂ a Carbonato de Dimetilo .. 27
CO₂ a Formato de Metilo ... 27
CO₂ a Hidrocarburos Pesados ... 28
Fotoreducción de CO₂ ... 28
CO₂ a Materiales Poliméricos para la Construcción 29
CO₂ a Química Fina y Fármacos ... 31
CAPITULO 2: ANTECEDENTES ... 31
TECNOLGIA QUE SE VEN FAVORECIDAS POR LOS METODOS DE
SEPARACION Y CAPTURA DE CO₂ .. 31
ABSORBENTES SÓLIDOS DE BAJA TEMPERATURA 32
K₂CO₃(s) + CO₂(g) + H₂O(g) ↔ 2KHCO₃(s) (6) 32
Mg₃Si₂O₅(OH)₄ + 3CO₂ ↔ 3MgCO₃ + 2SiO₂ + 2H₂O (7) 33
Na₂CO₃(s) + CO₂(g) + H₂O(g) ↔ 2NaHCO₃(s) (8) 33
Na₂CO₃(s) + 0.6 CO₂ (g) + 0.6H₂O (g) ↔0.4[Na₂CO₃.3NaHCO₃(s)] (9) .. 33
ABSORBENTES SÓLIDOS DE ALTA TEMPERATURA 33
Absorbentes Naturales (base calcio). .. 33
CaO(s) + CO₂(g) ↔ Ca₂CO₃(s) (10) ... 34
ABSORBENTES SINTÉTICOS ... 35
Base calcio ... 35
Base cerámica .. 35
Base litio ... 36
Base sodio .. 37
Base sodio y litio .. 37
CAPITULO 3: HIPÓTESES Y OBJETIVOS 38
Hipótesis: ... 38
Objetivo General: .. 38
Objetivos Particulares: ... 38
CAPITULO 4: PROCEDIMIENTO EXPERIMENTAL 39
Síntesis: ... 39
Método de reacción en estado sólido: .. 39
Li₂CO₃ + ZrO₂ ↔ Li₂ZrO₃ + CO₂ (14) ... 39
Impregnación incipiente ... 39
Caracterización: ... 40
Difracción por Rayos X ... 40
Área Superficial BET ... 41
Análisis del Tamaño de Partícula ... 41
Microscopía Electrónica de Barrido ... 41
Evaluación como Absorbente de CO₂ ... 42
CAPITULO 5: DISCUSION DE RESULTADOS 42
Estructura Cristalina .. 42
Tamaño de cristal ... 45
Tamaño de partícula .. 45
Área Superficial del Aceptor de CO₂ ... 46
Morfología: .. 46
Análisis termo gravimétrico de Modo Modulado de Alta resolución: 58
CAPITULO 6: CONCLUSIONES .. 59
CAPITULO 7: REFERENCIAS .. 60
Índice de Figuras

Figura 1: Diagrama de flujo del método de síntesis de las muestras de Li2ZrO3 41
Figura 2: Patrones de difracción de rayos X de las primeras muestras .. 44
Figura 3: Patrones de difracción de rayos X de las muestras repetición (superior) ampliación comparando al Na₂ZrO₃ (izquierda) al Li₂ZrO₃ (derecha) 45
Figura 4: muestras antes de ciclo a 10kx. Morfología similar con tamaños de partícula de 2 a 4 µm ... 48
Figura 5: muestras después de ciclo a 10kx. Morfología similar con tamaños de partícula de 2 a 4 µm ... 48
Figura 6: muestras antes de ciclo a 10kx. Morfología similar con tamaños de partícula de 2 a 4 µm ... 49
Figura 7: muestras después de ciclo a 10kx de la serie repetición ... 49
Figura 8: análisis elemental semicuantitativo de la muestra Li₀ .. 50
Figura 9: análisis elemental semicuantitativo de la muestra Li₀-1 ... 51
Figura 10: análisis elemental semicuantitativo de la muestra LiNa-2 51
Figura 11: análisis elemental semicuantitativo de la muestra LiNa-5 52
Figura 12: análisis elemental semicuantitativo de la muestra LiNa-10 52
Figura 13: análisis elemental semicuantitativo de la muestra LiNa-15 53
Figura 14: primer ciclo de absorción de la serie original ... 55
Figura 15: regeneraciones del primer ciclo de la serie original ... 56
Figura 16: absorción del segundo ciclo de la serie original ... 56
Figura 17: regeneración del segundo ciclo de la serie original ... 57
Figura 18: comparación de los ciclos de LiNa-5 y LiNa-R ... 58
Figura 19: prueba multiciclos de LiNa-5 para determinar su estabilidad Figura 20 análisis modulados de alta resolución de la muestra LiNa-5 .. 58
Figura 20: análisis modulados de alta resolución de la muestra LiNa-5 59
Figura 21: análisis termodinámico ... 60

Índice de Tablas

Tabla 1: Propiedades Físico-Químicas del Dióxido de Carbono .. 14
Tabla 2: Identificación de las muestras en función a la cantidad de carga adicionada del promotor se sodio ... 41
Tabla 3: Tamaño de cristal obtenido por la Ecuación de Scherrer y los datos XRD 46
Tabla 4: Muestra el tamaño de partícula de la primera serie y serie repetición 47
Tabla 5: Porcentajes de conversión del primer ciclo de absorción/regeneración 57
Tabla 6: Porcentajes de conversión del segundo ciclo de absorción/regeneración 57
AGRADECIMIENTOS

Agradezco a Dios por darme la oportunidad de vivir estos años para poder obtener un grado más. A mi Esposo, Familiares y Amigo por todo su apoyo, tiempo y comprensión durante estos 2 años de estudio.

A mis Asesores por su tiempo y dedicación para la realización de este tema de investigación y por la guía que me ofrecieron para poder realizar esta tesis de Maestría.
CAPITULO 1: INTRODUCCIÓN

Aunque las autoridades que dirigen las políticas ambientales de los gobiernos alrededor del mundo y los medios de comunicación afirman que los efectos del incremento en los niveles de dióxido de carbono (CO₂) sobre el calentamiento global son inciertos, existe suficiente evidencia científica que soporta el argumento que asevera que las actividades humanas están provocando un calentamiento de la superficie de la tierra (Oreskes 2004). De acuerdo con un reporte de la Academia de Ciencias de los Estados Unidos, en el apartado “La Ciencia del Cambio Climático”, los gases de invernadero de origen antropogénico (CO₂, CH₄, N₂O, CFC-11 (CCl₃F) están causando un incremento en las temperaturas del aire superficial y del subsuelo oceánico (National Academy of Sciences Comitee, 2001). Ya que es predecible en un futuro cercano que los combustibles fósiles seguirán siendo la principal fuente para la producción de energía, es crucial reducir las emisiones de CO₂ a fin de estabilizar la concentración del CO₂ atmosférico.

La secuestración geológica, la disposición oceánica y la fijación orgánica han sido extensivamente reportadas en la literatura como opciones de disposición de dióxido de carbono de origen antropogénico. Sin embargo, la carbonatación de sólidos, minerales y sintéticos, es una técnica de captura de CO₂, la cual tiene un gran potencial debido a que el CO₂ es dispuesto en un sólido de manera segura e inocua.

Las predicciones de las tendencias globales del uso de energía sugieren un incremento continuo en las emisiones de CO₂ y un aumento en las concentraciones de éste en la atmósfera a menos que se incorporen cambios significativos en la manera que se usa y produce la energía en la actualidad. Basándose en las tendencias actuales de emisiones de CO₂, se predice que el aumento en las emisiones globales de este gas de efecto invernadero se incrementará de 7.4 billones de toneladas (BTA) por año que se emitían en 1997 a cerca de 26 BTA por año para el 2100 (US DOE, 2002). La concentración atmosférica de CO₂ se incrementó de los 280 ppm en 1800 a 370 ppm en el 2000 principalmente debido al consumo de combustibles fósiles (Frankhause y Cols, 2001).
EFECTO INVERNADERO
Uno de los efectos más conocidos producto del drástico incremento de CO₂ en la atmósfera, es el efecto de invernadero. El efecto de invernadero es el calentamiento de la superficie terrestre por el calor que es atrapado en la atmósfera. Uno de los principales gases de invernadero resultado de las actividades humanas es el dióxido de carbono. El incremento de la presencia de CO₂ junto con otros gases de invernadero es debido a que la atmósfera atrapa el calor radiado por la tierra y lo mantiene en ésta evitando que escape de la atmósfera terrestre que da como resultado un incremento gradual de la temperatura de la superficie terrestre.

Los investigadores estiman que la temperatura superficial terrestre se ha incrementado entre 0.6 y 1.0°C durante los pasados 150 años y se incrementará de 1.4 a 5.8° de 1990 a 2100 (Berger, 2002). El año más caliente durante los pasados 1200 años fue 1998 y el siglo más caliente en los últimos 1000 años fue el siglo veinte (Ledley y Cols, 1999). El panel intergubernamental del cambio climático (IPCC) predice que el nivel del mar se incrementará de 0.09 a 0.88 metros de 1990 a 2100 (Berger, 2002). Otras probables consecuencias del calentamiento global incluyen sequías, expansión de desiertos, ondas calidas, disrupción de los ecosistemas, cambios de climas severos, y pérdida de productividad agrícola (Global Warming, 2002).

Los gases de invernadero aparte del dióxido de carbono (CO₂), se enecuentran; vapor de agua (H₂O) (Ledley y cols., 1999; Matthews, 1996), ozono (O₃), metano (CH₄), óxido nitroso (N₂O), y cloro-fluorocarbonos (CFC’s) (Ledley y Cols, 1999; Morrissey and Justus, 1997). Desde el comienzo del periodo industrial, las concentraciones de los gases de invernadero de origen antropogénico (CO₂, CH₄, N₂O, CFC-11 (CCl₃F) and CFC-12 (CCl₂F₂)) se han incrementado (Ledley y cols, 1999). De todos estos gases el CO₂ es el principal gas de invernadero de interés debido a su importante presencia en la atmosfera, la proyección de su futuro y su larga persistencia en el medio ambiente (Ledley y cols, 1999). La concentración de CO₂ en la atmosfera se ha incrementado de 280 ppmv en la era preindustrial a cerca de 364 ppmv en 1997 (Ledley y Cols, 1999). De acuerdo a las observaciones de Mauna Loa Observatory, Hawaii, el CO₂ se ha incrementado más
rápidamente en años recientes, de 310 ppmv en 1958 a 370ppmv en el 2001 (Berger, 2002). Los investigadores han predicho que un doble aumento de la concentración atmosférica de CO₂ podría incrementar la temperatura global de 1 a 5°C a medidos del presente siglo (Rubin y Cols, 1992).

Anterior a la revolución industrial, la relativamente constante concentración de CO₂ en la atmósfera implicó que las cantidades de CO₂ generadas por procesos naturales fueran iguales a las cantidades absorbidas por procesos naturales. Sin embargo, la actividad humana, principalmente la quema de combustibles fósiles, produce alrededor de 24 billones de toneladas de CO₂ por año y solo la mitad de esta cantidad está siendo absorbida por procesos naturales (Morrissey y Justus, 1997).

EFECTOS DE LOS GASES DE INVERNADERO

Uno de los efectos más conocidos del drástico incremento de CO₂ en la atmósfera, es el efecto de invernadero que es producto del calentamiento de la superficie terrestre por el calor que es atrapado en la atmósfera. Algunos investigadores argumentan que el incremento del calentamiento de la superficie terrestre podría conducir al derretimiento de las capas polares las cuales provocarían un incremento en los niveles de los océanos acompañado de cambios climáticos impredecibles. Aunque los efectos del incremento de los niveles de CO₂ atmosférico en el clima global son inciertos, existe un consenso general de que si se duplica el contenido de CO₂, esto traería un conjunto de consecuencias ambientales y ecológicas muy serias en el próximo siglo. Por ejemplo, esto reduciría la velocidad con la cual se deposita el carbonato de calcio en los arrecifes de coral en un orden de 30 a 40% (Langdon y Cols, 2000). La mayoría de este incremento ocurrió solo en unas pocas décadas y a menos de que se tomen acciones, el crecimiento proyectado hacia el siglo veintiuno podría conducir a duplicar y aun triplicar los niveles de CO₂ del periodo preindustrial (Lackner, 2003).

A diferencia de las emisiones de SO₂ la acumulación de CO₂ es más importante que la velocidad de emisión del mismo. El consumo de CO₂ por los océanos puede compensar de alguna manera estas emisiones [Archer y cols, 1997], pero este consumo se colapsará una vez que las concentraciones de CO₂ en el aire se mantengan constantes. El consumo
oceánico de CO₂ depende del gradiente de concentración en la superficie del océano mantenido por el actual incremento de CO₂ en el aire. Por lo tanto, un incremento de la concentración de CO₂ en el aire, conducirá necesariamente a una disminución de la velocidad de consumo de este por los océanos y por lo tanto a un mayor incremento de la concentración atmosférica de CO₂.

A fin de estabilizar el nivel de CO₂ atmosférico, las emisiones de este tendrían que ser reducidas en varios órdenes de magnitud. Como resultado, las emisiones mundiales percápita tendrían que ser reducidas por un factor de entre diez y treinta veces con respecto a los niveles percápita actuales de los países industrializados [Schimel y cols, 1995]. La estabilización de los niveles de CO₂ en la atmósfera requiere abandonar el uso de los combustibles fósiles para generar energía, o capturar y/o almacenar en parte, si no todas las emisiones de CO₂ producidas.

CALENTAMIENTO GLOBAL
El calentamiento global del planeta es el fenómeno del aumento en la temperatura de la atmósfera terrestre y de los océanos que se ha dado en las últimas décadas debido a los gases de invernadero que se acumulan en la atmósfera formando una capa cada vez más gruesa, atrapando el calor del sol y causando su calentamiento.

Como consecuencia de la quema de combustibles fósiles y de otras actividades humanas asociadas al proceso de industrialización, la concentración de los gases de invernadero en la atmósfera ha aumentado de forma considerable en los últimos años. Esto ha ocasionado que la atmósfera retenga más calor de lo debido, y esta la causa de lo que hoy conocemos como el calentamiento global.

El calentamiento global está provocando actualmente serias consecuencias a la vida en el planeta entre las que se encuentran: El derretimiento de glaciares; sequías severas que causan mayor escasez de agua; deforestación que aumenta o hace surgir desiertos; huracanes, ciclones (el calentamiento hace con que se evapore más agua de los océanos potenciando estos tipos de catástrofes); el aumento en los niveles del mar produciendo
inundaciones costeras; el trastorno de hábitats como los arrecifes de coral y los bosques podrían llevar a la extinción muchas especies vegetales y animales ocasionando variaciones en el ecosistema. Olas de calor que provoca la muerte de ancianos y niños, especialmente en Europa; los bosques, los campos y las ciudades enfrentarán nuevas plagas problemáticas y más enfermedades transmitidas por mosquitos [Bird y Molinelli, 2008].

¿QUÉ ES EL DIOXIDO DE CARBONO (CO$_2$)?

El dióxido de carbono es comúnmente llamado acido carbónico el cual es un componente natural del ambiente. El dióxido de carbono es una molécula con la fórmula molecular CO$_2$. Esta molécula lineal está formada por un átomo de carbono que está ligado a dos átomos de oxígeno, O = C = O. A pesar de que el dióxido de carbono existe principalmente en su forma gaseosa, también tiene forma sólida y líquida. Solo puede ser sólido a temperaturas por debajo de los 78 °C. El dióxido de carbono líquido existe principalmente cuando el dióxido de carbono se disuelve en agua. El dióxido de carbono solamente es soluble en agua cuando la presión se mantiene a valores altos. Cuando la presión desciende intentará escapar al aire, dejando una masa de burbujas de aire en el agua. El carbono almacenado en los combustibles fósiles tales como el petróleo y gas natural una vez combinado con oxígeno produce CO$_2$ al reaccionar con este [Heinz], así mismo el CO$_2$ también se encuentra en forma de diversos carbonatos en los minerales naturales tales como la piedra caliza, en los océanos, este también está implicado en la fotosíntesis y en la reacción de combustión (reacciones 1 y 2):

Fotosíntesis:

$$6 \text{CO}_2 + 6 \text{H}_2\text{O} \rightarrow \text{C}_6\text{H}_12\text{O}_6 + 6 \text{O}_2 \quad (1)$$

Combustión:

$$\text{C}_6\text{H}_{12}\text{O}_6 + 6 \text{O}_2 \rightarrow 6 \text{CO}_2 + 6 \text{H}_2\text{O} + \text{energía} \quad (2)$$
Puesto que el CO₂ no es considerado un gas contaminante no tiene valores límite de emisión y tampoco de inmisión, pero si incrementa este de forma significativa en la atmósfera produciendo el denominado efecto invernadero por lo que su control y regularización a nivel mundial es necesaria.

CARACTERÍSTICAS DE CO₂ FÍSICAS Y QUÍMICAS

En condiciones normales es un gas inodoro, incoloro ligeramente ácido y no es toxico se forma durante la combustión en presencia de oxígeno [Chang, 2003] de masa molar 44.011 g/mol. Es un compuesto muy estable y se degrada solamente en altas temperaturas. El CO₂ líquido se almacena bajo presión y a temperaturas bajas.

Tabla 1. Propiedades Físico-Químicas del Dióxido de Carbono

<table>
<thead>
<tr>
<th>Propiedad</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Masa molecular</td>
<td>44.01</td>
</tr>
<tr>
<td>Gravedad específica</td>
<td>1.53 a 21 °C</td>
</tr>
<tr>
<td>Densidad crítica</td>
<td>468 kg/m³</td>
</tr>
<tr>
<td>Concentración en el aire</td>
<td>370.3 * 10⁷ ppm</td>
</tr>
<tr>
<td>Estabilidad</td>
<td>Alta</td>
</tr>
<tr>
<td>Líquido</td>
<td>Presión < 415.8 kPa</td>
</tr>
<tr>
<td>Sólido</td>
<td>Temperatura < -78 °C</td>
</tr>
<tr>
<td>Constante de solubilidad de Henry</td>
<td>298.15 mol/ kg * bar</td>
</tr>
<tr>
<td>Solubilidad en agua</td>
<td>0.9 vol/vol a 20 °C</td>
</tr>
</tbody>
</table>
ESFUERZOS POR REDUCIR LAS EMISIONES DE GASES DE INVERNADERO

Una gran cantidad de las emisiones de CO$_2$ antropogénico a la atmósfera es resultado del uso de combustibles fósiles para la producción de energía. El uso y producción de carbón es la segunda fuente de emisiones de CO$_2$, contribuyendo con un 33% de todas las emisiones de origen antropogénico, solo por debajo de los productos petrolíferos (EIA, 2004).

De forma general existen dos escenarios la reducción de emisiones; el escenario de “no tomar ninguna acción” y el de la estabilización de las emisiones de CO$_2$. La diferencia entre los dos escenarios; 1 Giga tonelada por año (Gt/a) en el 2025 y 4 Gt/a en el 2050, proporciona un estimado de las reducciones requeridas de CO$_2$ para salvar dicha diferencia. Una manera de manejar las emisiones de carbón sería el uso y producción más eficiente de energía para así reducir la necesidad de mayor cantidad de esta y a su vez de fuentes de combustibles fósiles. Otra opción involucraría el incremento de la dependencia de combustibles y tecnologías de bajo contenido de carbón o libres de carbón, como son la nuclear y fuentes de combustibles renovables. Ambas opciones requerirían en cierta medida la educación de los consumidores y ajustes importantes a nuestro actual estilo de vida. Por lo tanto, es necesaria una solución de manera más inmediata.

La investigación dirigida hacia la reducción de las emisiones de gases de invernadero la cual se han incrementado en años recientes incluye; nuevas fuentes de energía en desarrollo no basadas en carbón, el mejoramiento de la eficiencia energética de los actuales procesos y la captura de CO$_2$ y secuestración. En 1991 la Agencia Internacional de Energía (AIE), fundada como un consorcio de organizaciones industriales y gubernamentales, establecieron el Programa de Desarrollo de Investigación en Gases de Invernadero (Matthews, 1996). En 1990, el ministro japonés para el comercio internacional e industrial (MITI) estableció el Instituto de Investigación de Nuevas Tecnologías para a Tierra (RITE) a través de la organización para el desarrollo de nuevas energías (NEDO). RITE tiene laboratorios especializados para sistemas globales de análisis y fijación de CO$_2$ así como catálisis, el cual gasta alrededor de 140 millones de USD encaminados a la fijación biológica y utilización del CO$_2$ y 70 millones de USD para la fijación de CO$_2$ en áreas desérticas mediante el uso de funciones biológicas (desarrollo de plantas para enverdecer...
los desiertos mediante el mejoramiento de las funciones catalíticas de la fijación de CO$_2$ microbiana mediante enzimas) (Matthews, 1996).

El mejoramiento de las eficiencias energéticas y el uso de fuentes de energía han sido las estrategias más efectivas a corto plazo (20 años) para reducir las emisiones de gases de invernadero. De estas, cinco áreas importantes han surgido: el mejoramiento de la eficiencia de conversión de la energía termo-eléctrica en la plantas de generación eléctrica, el uso de tecnologías basadas en gas natural y sistemas de ciclo combinado (NGCC), (3) el mejoramiento en la eficiencia del combustible para el trasporte, en particular para automóviles tales como la introducción de autos híbridos, vehículos a celdas de combustible y vehículos eléctricos, más eficientes sistemas de calentamiento y de agua caliente en edificios y casas y el desarrollo de fuentes de poder a pequeña escala como tales como las celdas de combustible (Kaya, 2002).

A medida que pasa el tiempo estos métodos pueden ser efectivos en la reducción de las emisiones de CO$_2$, pero generalmente estos no son aplicables a un gran número de plantas de potencia basadas en la quema de combustibles fósiles. Por lo tanto, la captura y la secuestración de CO$_2$ es necesaria para reducir la concentración de CO$_2$ atmosférico durante las próximas décadas. En forma teórica es posible la remoción de CO$_2$ del aire mediante el mejoramiento de los sumideros naturales, tales como el crecimiento de más algas mediante su fertilización en el océano, plantar árboles, y enverdecer los desiertos (Matthews, 1996). Estas ideas tienen importancia en el largo plazo, pero no son prácticas en el presente. Por lo tanto, la captura de CO$_2$ a partir de la emisión durante la quema de combustibles fósiles debe de recibir un énfasis mayor en las actuales actividades de investigación a nivel mundial.

MEDIDAS PARA REDUCIR LAS EMISIONES DE LOS GASES INVERNADERO

Para regular las emisiones de los gases invernadero y así mismo tener un control sobre el cambio climático, en el año de 1997 Japón se vio en la necesidad de negociar un protocolo del Convenio marco de las Naciones Unidas sobre el cambio climático (que data de 1992),
conocido como el protocolo de Kioto. Más de 150 países son parte de este protocolo, el cual entro en vigor el 16 febrero del 2005 [Protocolo de Kyoto, 1998].

Uno de los objetivos de este protocolo es que los países industrializados se comprometan a disminuir sus emisiones de los gases invernadero durante el periodo 2008-2012 con respecto a los niveles de 1990. Los gases invernaderos son producidos principalmente durante la quema de los combustibles fósiles (carbono y petróleo) dado que la mayoría de los países su principal fuente de energía está basada en este tipo de combustibles; se han visto en la necesidad de desarrollar o implementar nuevas fuentes de energías como pueden ser fuentes de energía renovables, energía nuclear o producción de hidrogeno.

FUENTES RENOVABLES DE ENERGIA

Existen dos caminos para poder reducir las emisiones de CO₂: reduciendo el uso de combustibles fósiles o desarrollando fuentes de energías alternas, las cuales incluyen a las fuentes de energía renovable (no fósiles); algunos ejemplos de estos tipos son:

Biocombustibles: este tipo es la fuente más importante de energía renovable, la cual contribuye con el 10% o más del total de la energía primaria, sin embargo es necesaria una muy grande área superficial de cultivo para crear este tipo de energía y poder reemplazar una parte sustancial de la fósil [Lyngfelt, 2001].

Hidroelectricidad: es la segunda más importante con el 2% del total de la energía primaria, un inconveniente de este tipo de energía es que necesitan áreas adecuadas ya que pueden causar inundaciones [Hoffman y Cols, 2001].

Energía Eólica: Esta proporciona el 0.02% de la energía total en el mundo, la cual aumenta día con día, al igual que las anteriores este tipo de energía tiene un inconveniente puesto que se necesita de grandes áreas de tierra para producirla y de corrientes de viento regulares durante todo el año [Lyngfelt, 2001].
Energía Solar: Tiene un gran potencial, pero lamentablemente la energía solar térmica y fotovoltaica siguen siendo muy costosa y poco eficiente en comparación con la de los combustibles fósiles, sin embargo se espera que en un futuro se resuelvan tales barreras tanto tecnológicas como económicas [Hoffman y Cols, 2001].

Energía Nuclear: en la actualidad contribuye con el 7% de la energía total primaria, pero debido al bajo rendimiento de la energía atómica la electricidad producida es una cantidad parecida a la hidroelectricidad [Lyngfelt, 2001].

Para estabilizar las emisiones del gas invernadero más importante (CO₂) es necesario realizar tres acciones: a) cambiar a fuentes de energía que consuman menos combustibles fósiles b) eficientar los procesos de generación de energía c) aplicar la separación y captura del CO₂ a procesos existentes [Hoffman y Cols, 2001].

SECUESTRACION
Considerando la importancia de los combustibles fósiles para la salud de la economía global, existe una urgencia en la necesidad de desarrollar una opción efectiva para el manejo del carbón, la cual requiere de la captura del CO₂ y de su almacenamiento de forma segura a partir de los sistemas de energía globales. Tal opción puede ser la secuestración.

El término “secuestación” se refiere a “apartar” e “inmovilizar” el CO₂ el cual se libera al extraer la energía de los combustibles fósiles. Para algunos investigadores el término “secuestación” se ha convertido en sinónimo de secuestración biológica. Por ejemplo, el incremento de biomasa de tipo vegetal para capturar y almacenar CO₂ [Harvey, 2004].

SISTEMAS DE CAPTURA DE CO₂
El propósito de la captura de CO₂ es el de producir una corriente concentrada de CO₂ a presiones altas la cual puede ser fácilmente transportada a un sitio de almacenamiento. Dependiendo del proceso, existen tres propuestas para la captura del CO₂ generado [Bolland, 2004].
• **Sistemas de Precombustión**: Son los sistemas que separan el CO₂ antes de la combustión. Estos abarcan una primera etapa en donde el combustible es generalmente convertido a una mezcla de hidrógeno y monóxido de carbono, típicamente por reformación u oxidación parcial. Entonces, el monóxido de carbono es transformado a CO₂ mediante la reacción de desplazamiento de agua (Water Gas Shift). La principal ventaja de los sistemas de precombustión es que estos producen un combustible (hidrógeno) que es esencialmente libre de carbono. Las tecnologías emergentes de precombustión incluyen; los procesos de reformación mejorada, reactores a base de membranas con captura de CO₂ y el “Chemicals Looping”.

• **Sistema de Combustión Oxy-Fuel**: Son sistemas que utilizan oxígeno para la quema del combustible primario, produciendo un gas de salida que consiste principalmente de vapor de agua y CO₂, evitando la dilución con nitrógeno. Uno de los principales retos en la combustión oxy-fuel es la alta temperatura involucrada la cual hace que la recirculación de los gases de salida a través de la cámara de combustión sea necesaria. La generación de grandes cantidades de oxígeno puro también debe ser considerada en estos sistemas.

• **Sistemas de Post-Combustión**: Son aquellos que separan el CO₂ de los gases de salida producidos por la combustión de combustibles fósiles primarios. En la actualidad la absorción química es la tecnología de captura más importante de post-combustión. Los procesos de absorción ofrecen altas eficiencias y selectividades y bajos costos que otros procesos existentes de captura de post-combustión. Las tecnologías emergentes incluyen procesos de absorción de CO₂, membranas de separación de gases y absorbentes sólidos de alta temperatura.

METODOS DE SEPARACION Y CAPTURA DEL CO₂
La industria requiere de desarrollo le tecnologías para separar el CO₂ en los procesos y de esta manera eficientarlos. La separación del CO₂ de otros contaminantes durante los procesos y la captura de éste, es una buena opción tecnológica para controlar sus emisiones a la atmósfera, mejorar la eficiencia total de la generación de energía [Dijkstra, 2004].
Las concentraciones de CO₂ son probables a ser cada vez más altas a menos que se realicen cambios a los procesos de generación de energía. Una propuesta es almacenar o capturar el CO₂ para reducir o eliminar su emisión a la atmósfera [Orr, 2004]. Cualquier técnica que evite que el CO₂ se libere a la atmósfera es considerada captura del carbono. Así mismo existen técnicas para capturar el CO₂ directamente del aire para compensar emisiones a otras partes [Davison y cols 2001].

Varios métodos se han sugerido para la captura de CO₂. Estos incluyen la adsorción física y química, la separación de membranas, la destilación crio génica y la absorción física y química, [Freund, 1997].

Sin embargo estos métodos necesitan superar los límites de costo y la cantidad de energía requerida para tratar corrientes grandes de humo producido por las centrales eléctricas [Seo y cols, 2007].

Membranas: Una membrana de separación es aquella que consta de barreras finas las cuales permiten la impregnación selectiva de ciertos gases, permitiendo que un componente de cierto gas pase con una velocidad mayor que los otros. Este tipo de separación se puede considerar un estado estacionario de la absorción y la adsorción. Puesto que permite que la molécula deseada fije por adsorción a un lado con una presión más alta, por lo que la molécula absorbe en el interior de la membrana alcanzando eventualmente el otro lado donde finalmente puede ser liberada [GCEP 2005].

Las principales ventajas de ese proceso son: No requiere de la regeneración del material, el sistema es compacto y ligero y tiene bajos requerimientos de mantenimiento puesto que no existen partes móviles dentro de la unidad de la membrana.

Existen membranas de tipo polimétricas para la separación del CO₂. Las cuales separan el CO₂ del CH₄, esta separación se lleva a cabo mediante la diferencia de presiones que hay a
através de la membrana, una condición para que el CO2 tenga permeabilidad en la membrana es que el gas sea sometido a una presión considerable. [Barraza, 2005].

La desventaja de este proceso es que dichas membranas no son estables a alta temperatura y ambientes ácidos. [Ida y cols, 2004]

Destilación Criogénica: Cuando los gases tienen diferentes temperaturas de ebullición estos pueden ser separados enfriándolos hasta las diferentes fases. Este tipo de proceso se utiliza para separar gases en corrientes muy puras [Wong, y Biletti,2002].

Por otra parte se puede usar el proceso criogénico para la captura del carbón separando el oxígeno, el nitrógeno en el aire para la combustión del oxy-combustible. Las reacciones de la combustión entonces se realizan con oxígeno puro y de esta manera los productos de la combustión serán CO2 y agua y a su vez mediante otro proceso se lleva a cabo la separación de CO2 dejando una corriente pura [GCEP 2005].

Una de las desventajas de este proceso es que solo se pueden utilizar cuando la concentración de CO2 en el humo es alta (90%), esta tecnología no ha podido ser aplicada a corrientes de CO2 mas diluidas, otra desventaja es que el proceso requiere altas energías y agua en la corriente gaseosa y se condensa con el CO2 necesitando separarla más adelante. [Wong y Biletti, 2002]

ADSORCIÓN
Se llama adsorción al fenómeno de acumulación de partículas sobre una superficie. La sustancia que se adsorbe es el adsorbato y el material sobre el cual lo hace es el adsorbente.

La adsorción es muy selectiva. La cantidad adsorbida depende en gran medida de la naturaleza y del tratamiento previo al que se haya sometido a la superficie del adsorbente, así como de la naturaleza de la sustancia adsorbida. Al aumentar la superficie de adsorbente y la concentración de adsorbato, aumenta la cantidad adsorbida.
Atendiendo a las fuerzas de interacción entre las moléculas de adsorbente y adsorbato, se acepta la existencia de dos tipos fundamentales de adsorción.

Adsorción Física: Consiste en la afinidad del CO₂ a la superficie de un material bajo ciertas condiciones sin la formación de un vínculo químico. Los adsorbentes pueden separar el CO₂ de una corriente preferencial atrayéndola a la superficie del material a altas presiones con interacciones débiles tales como fuerzas de van der Waals [GCEP, 2005].

Adsorción Química: La adsorción química o quimisorción se produce una reacción química en la superficie del sólido. También implica un cambio sustancial en la densidad electrónica entre substrato y adsorbato. La naturaleza del enlace puede ser intermedia entre iónico y covalente [Calatayud, 2000].

ABSORCION

La absorción es un método de transferencia de masa de una corriente de aire que contiene COV a un líquido absorbente. Las soluciones absorbentes pueden ser agua, sosa cáustica, aminas y algunos hidrocarburos [EPA, 2002]. Así también la absorción física y química separa el CO₂ de una mezcla de gases que entran en contacto con un material que puede absorber selectivamente el CO₂ y que al ser calentado tiene la propiedad de liberar el gas.

Absorción Física: Es la disolución de un gas en un líquido, la cual depende de la presión parcial del gas y de la temperatura (ley de Henry), cuanto mayor sea la presión parcial de un gas sobre un líquido mayor cantidad de gas absorberá el líquido y a menor temperatura la capacidad del líquido para absorber gases aumenta.

La ventaja de dicho método es que se lleva acabo con poca energía y una desventaja es que para ser aplicado al CO₂ este necesita estar a una presión parcial alta. [Wong y Biletti, 2002]

Absorción Química: Este tipo de absorción tiende a ser más eficiente que los otros sistemas ya mencionados, pues el proceso está acompañado por una reacción química la cual mejora la trasferencia de masa de la fase gas a la fase líquida o sólida. Este sistema consta de dos
elementos, un material absorbente donde el CO2 es capturado luego liberado para que el material pueda ser regenerado y recuperado. [Rao y Cols, 2004]. Los materiales más utilizados comercialmente en la absorción química son las aminas las cuales son utilizadas para la remoción de impurezas acidas del gas.

Base Amina: Hoy en día la absorción base aminas es la única técnica comercial utilizada para la captura de CO2 de gases de salida. El método implica el exponer una corriente de gas a una solución acuosa de la amina que reacciona con el CO2 mediante una acción de neutralización ácido-base que forma una sal soluble (carbonato).

\[
2RNH_2 + CO_2 + H_2O \leftrightarrow (RHN_3)_2CO_3 \quad (3)
\]

Esta reacción es reversible por lo que el CO2 puede ser liberado mediante calentamiento en una columna de regeneración. Las aminas más comúnmente utilizadas son: dietanolamina (DEA), metildietanolamina (MDEA) y disopronanolamina (DIPA) [Strazisar y cols, 2001].

Un grupo importante de estos solventes son las alcanolaminas. Entre éste grupo está la monoetanolamina (MEA) usada comúnmente para la extracción del CO2 de los gases de salida de los hornos en una planta de generación de electricidad. Una solución acuosa de 15 al 30 % en peso de MEA reacciona con CO2 como se indica a continuación:

\[
C_2H_5O-NH_2 + H_2O + CO_2 \leftrightarrow C_2H_3O-NH_3^+ + HCO_3^- \quad (4)
\]

La Metildietanolamina (MDEA) se utiliza a menudo para la captura del CO2 de los gases de síntesis producidos en los reformadores del vapor. La solución acuosa de 35 a 50 % en peso MDEA reacciona con CO2.

La absorción química con aminas es la técnica más rentable puesto que se obtiene CO2 de los gases de salida con una pureza aproximada del 99% [Chakravarti y Cols, 2001].
Una de las desventajas de este método es que la captura del CO\(_2\) es extremadamente lenta, tiene un alto costo y se maneja a presiones parciales muy bajas, otra desventaja es que la amina se contamina con los gases presentes en los gases de salida tales como O\(_2\), SO\(_2\), NO\(_x\), HCl e hidrocarburos, los cuales reducen la capacidad de absorción por lo que las degrada rápidamente.

Además de la técnica de absorción, existen otros métodos para remover el CO\(_2\) de la atmósfera. Uno de ellos es el Adsorción Mediante Ciclos de Presión (PSA). Este proceso de separación implica el cambio de presión (aumento o reducción). Entre las ventajas de esta técnica es que se obtienen muy altas eficiencias de separación y que la regeneración se puede llevar acabo rápidamente, pero su desventaja es la cantidad de energía que se necesita para poder aumentar la presión y el costo del equipo para la adsorción [Suzuki e Inukai, 1996].

Además de la técnica de absorción, existen otros métodos para remover el CO\(_2\) de la atmósfera. Uno de ellos es el Adsorción Mediante Ciclos de la temperatura (TSA). Esta técnica logra la adsorción a temperatura ambiente o a bajas temperaturas, mientras que para liberar el CO\(_2\) se incrementa esta hasta un valor determinado. Una desventaja del TSA es que tiene un costo energético elevado al producir el vapor usado para la regeneración del adsorbente, además de que requiere de un tiempo muy grande para cambiar de una temperatura alta a temperatura ambiente [Suzuki e Inukai, 1996].

También existen formas naturales de capturar y almacenar el CO\(_2\) liberado y algunos ejemplos son: el confinamiento subterráneo que es una opción para almacenar el CO\(_2\) de forma subterránea el cual es usado en la recuperación de petróleo, el confinamiento terrestre, que es aquel que se lleva a cabo por medio de la luz solar y de la fotosíntesis. El costo de este tipo de confinamiento es relativamente bajo pero depende de la cantidad de tierra que se destine para plantaciones de árboles y su conservación durante cientos de años [Islam y Chakma, 2003].

En Noruega, Canadá y Argentina se han llevado a cabo tres grandes proyectos en donde se cada uno almacena cerca de un millón toneladas de CO\(_2\) por año; este es efectuado mediante el almacenamiento geológico.
Confinamiento Oceánico: Los océanos son almacenes naturales para el carbón atmosférico. Inyectar el CO$_2$ en las profundidades del océano podría retrasar su liberación a la atmósfera por varios cientos de años si se hace en una localización apropiada. Sin embargo, los costos serían demasiado grandes al tratar de inyectar el CO$_2$ en el océano a profundidades muy grandes [Islam y Chakma, 2003]).

USOS DEL CO$_2$
Algunos de los usos actuales del CO$_2$ son en la producción de productos químicos como la urea y el metanol y como agente para la extinción de incendios mediante la generación de atmósferas inertes.

Existen dos rutas principales en las que puede ser utilizado el CO$_2$ ya capturado. Una es el uso a corto plazo, es en donde el CO$_2$ capturado es almacenado en una base temporal y reemitido posteriormente como por ejemplo en las bebidas carbonatadas, aunque la cantidad de CO$_2$ utilizada es relativamente baja. La otra es el almacenamiento de larga duración donde el CO$_2$ se confina por un periodo de tiempo indefinido como por ejemplo en formaciones geológicas.

El proceso de recuperación de petróleo (EOR) por sus siglas en inglés, es donde el CO$_2$ es inyectado en un yacimiento de petróleo y tiene por objetivo mezclarse con el petróleo y hacerlo que se hinchne para reducir de esta forma su viscosidad. Por otra parte, ayuda a mantener las presiones del depósito. Donde no es soluble el CO$_2$ con el petróleo, su inyección ayuda a llevar este hacia los pozos de producción. El impacto potencial de la inyección de CO$_2$ en los procesos de recuperación se estima del orden de 130 Gt de CO$_2$ que se podrían almacenar como resultado de operaciones de EOR.

También el CO$_2$ en la actualidad puede ser utilizado en la síntesis del ácido acético, el cual se forma por la reacción catalítica directa del dióxido de carbono y el metano (5). Sin embargo, por medio de esta reacción solo se pueden producir bajas concentraciones de ácido acético debido a limitantes termodinámicas [Spivey, 2008].
Por otra parte, el CO₂ líquido se puede utilizar solamente en intercambiadores de calor e inyectores de aerosol presurizados. También el CO₂ sólido es utilizado como hielo seco el cual puede estar en forma de nieve, rebanadas, pepitas, pelotas, etc.

Otra aplicación actual del CO₂ es en el análisis de suelos, haciendo de este un método rápido y económico. Aunque el CO₂ producido en el interior del suelo puede ser de origen abiótico, fundamentalmente proviene de actividades biológicas, por esta razón se ha propuesto como indicador de la calidad del suelo. Un valor elevado en el flujo de CO₂ indica altos contenidos de materia orgánica, mientras que valores bajos indican bajos contenidos de esta [Ortiz, 2001]. En la India existen plantas para la extracción de oleorresina y pimentón (ORP) dulce por medio de un flujo de CO₂ en condiciones supercríticas. Esta tecnología se utiliza para obtener extractos similares a la ORP o incluso componentes de naturaleza lipídica, la extracción es llevada a cabo mediante el contacto del fluido en condiciones supercríticas con el pimentón seco y triturado [Fernández-trujillo, 2008].

NUEVAS TENDENCIAS EN LOS USOS DEL CO₂

En años recientes el dióxido de carbono ha sido el centro de atención debido a su posición como gas primario de invernadero y la implicación de sus emisiones en el problema del cambio climático. Recientemente, producto de la investigación, han surgido nuevas aplicaciones en el uso del CO₂, las cuales se presentan a continuación:

Conversión de CO₂ en Combustibles

El CO₂ es una materia prima renovable y barata (naturalmente abundante) la cual puede ser encontrada en cualquier lugar, asimismo la demanda de combustibles es también requerida en todo el mundo. El precio de los combustibles fósiles sigue estableciendo nuevos récords y hay también una gran preocupación relacionada con los efectos del calentamiento global
proveniente del CO₂ producido por su combustión. El reciclado parcial o completo del CO₂ (con un reactivo de acoplamiento) en líquidos de alta energía-densidad o en combustibles gaseosos parece ser una opción muy atractiva. El concepto es similar a un árbol artificial diseñado para remover un volumen de CO₂ igual a las emisiones totales de una tubería de una región determinada, resultando de cero el balance neto de CO₂ emitido a la atmósfera y que la quema de hidrocarburos proveniente de autos y camiones en la región sea de manera equivalente y efectiva de vehículos de cero emisiones. El CO₂ podría ser “cosechado” del árbol artificial y recirculado de nuevo en forma de gasolina sintética o de combustible sintético tipo diesel [Yu, 2008].

CO₂ a Metanol

Recientemente se ha investigado en rutas relacionadas con las reacciones de hidrogenación catalítica de CO₂ a metanol, alcoholes de alto peso molecular, gasolina e hidrocarburos de alto pero molecular (reacciones de Fischer-Tropsch). Particularmente, el enfoque ha sido hacia la producción de metanol, el cual es un compuesto intermedio clave para los combustibles e infraestructura química actual [Kiennemann y cols, 1988]. El metanol es sintetizado en actualmente a partir del gas de síntesis (syngas) que se obtiene proveniente de gas natural (un energético no renovable) a gran escala sobre catalizadores heterogéneos [Hansen, 1997].

La síntesis directa de metanol a partir de dióxido de carbono e hidrógeno ha sido explorada en conexión con los intentos que se realizan para reducir los niveles de CO₂ en la atmósfera. El costo del metano producido por la hidrogenación de CO₂ se espera que sea más alto que el costo del metanol producido por a partir de la mezcla (CO + CO₂). Sin embargo, la utilización del CO₂, el cual es un gas subproducto en muchos procesos químicos (el CO₂ es removido del gas de síntesis durante la síntesis del amoniaco), puede conducir a una disminución en el costo de metanol. Por otra parte, el CO₂ puede ser capturado de las reacciones de reformación de vapor de agua y producir hidrógeno que puede ser utilizado en celdas de combustible [Wild, 2000]. Está documentado en la literatura que los catalizadores Cu/ZnO/ZrO₂ usados para la conversión de syngas es
CO2 a Ácido Fórmico
El ácido fórmico es reconocido como un potencial combustible base para celdas de combustible de baja temperatura. Recientemente se ha reportado una nueva y prometedora opción biológica para convertir el CO2 en ácido fórmico a gran escala, mediante encapsular el formiato-dehidrogenasa [FateDH, EC 1.2.1.2] en un gel hibrido de de sílica-alginato [Lu y cols, 2006]. La reducción del CO2 por la FateDH encapsulada en perlas del hibrido sílica-alginato resultó en un alto rendimiento hacia la producción de ácido fórmico (95.6%) y la actividad relativa del FateDH inmovilizada después de 10 ciclos fue del 69% [Lu y cols, 2006].

CO2 a Carbonato de Dimetilo
La síntesis directa del dimetil carbonato (DMC) a partir de CO2 y metanol, es una opción atractiva para la utilización del CO2 [Zhao y cols, 2000]. Es de hacer resaltar que el DMC es un importante aditivo para combustibles y es utilizado como monómero para las síntesis de resinas de policarbonato [Jessop y cols, 1999, Isaacs y cols, 1999]. El DMC también es un producto químico ambientalmente benigno con un amplio rango de aplicaciones, por ejemplo como sustituto no-toxico del dimetil sulfato y del fosgeno los cuales son agentes químicos altamente tóxicos [Ono, 1997, Aresta y cols, 1997]. Además, el proceso para convertir el CO2 en un producto químico versátil es en la actualidad reconocido como procesos de química verde [Choi y cols, 1999]. En particular una reacción en fase gas se ha adoptado para obtener por síntesis directa al DMC partir de CO2 y metanol utilizando un catalizador soportado de Cu-Ni/V2O5-SiO2. El Cu y el Ni son relativamente baratos y la reacción puede ser llevada a cabo en un reactor de lecho fijo sin la generación de subproductos como el agua durante la reacción, de esta manera favoreciendo un alto rendimiento hacia la formación del DMC [Wu y cols, 2006].

CO2 a Formiato de Metilo
Recientemente, un nuevo concepto se ha demostrado para el acoplamiento de especies superficiales de formiato a partir del CO2 y de un catalizador sólido con exceso de metanol
en hidrogeno para formar formiato de metilo, la cantidad de producto final la se encontró que excedía la monocapa de la superficie del catalizador por muchas veces (> 45 veces) [Yu y cols, 2007]. Un nano-catalizador a base de Pd/Cu/ZnO/alumina fue capaz de activar el CO2 gaseoso para producir metil formiato condensable en altos rendimientos (>20%) acompañados de una excelente selectividad (>96%) bajo condiciones industrialmente aplicables [Tsang y cols, 2008].

CO2 a Hidrocarburos Pesados

La estrategia en este concepto es que el CO2 como principal gas de invernadero, pueda ser reciclado como combustibles hidrocarbonados en lugar de ser liberados a la atmósfera. Los sistemas catalíticos heterogéneos se han reportado para hidrogenación directa de CO2 para la producción de olefinas e hidrocarburos ligeros, de forma similar a la química de Fischer–Tropsch a partir del CO e H2. Esta reacción de hidrogenación puede ser efectuada sobre varios catalizadores base-Fe, por ejemplo catalizadores de hierro promovidos con K, Cr, Mn y Zn [Kim y cols., 2006]. Sin embargo, el costo y disponibilidad del hidrógeno para el proceso son en la actualidad factores que impiden su comercialización. Por otra parte se ha demostrado recientemente que electrodos de nanopartículas metálicas soportadas en nanotubos de carbono son capaces de reducir el CO2 electroquímicamente a hidrocarburos de cadena larga (>C5), con una distribución de hidrocarburos similar a aquella obtenida por la química del proceso Fischer–Tropsch. De forma interesante la reacción electroquímica puede ser llevada a cabo a temperatura ambiente y presión atmosférica en una celda a flujo continuo contactando el catalizador con el CO2 en fase gaseosa [Centi y cols., 2007]. Este proceso, si se integra con un dispositivo foto-electroquímico usando energía solar y agua, puede ofrecer una posible ruta para convertir el CO2 de nuevo a combustibles.

Fotoreducción de CO2

La Fotoreducción directa de CO2 ha atraído mucha atención recientemente. Investigadores en el Laboratorio Nacional de Sandia (EEUU) están desarrollando un dispositivo-prototipo el cual utiliza energía solar concentrada para impulsar las reacciones químicas que separan (split) las moléculas de CO2 para formar CO [Sandia, 2008]. Este sistema fue originalmente diseñado para el “split” del agua para formar hidrógeno. El CO es un químico
sintéticamente útil o puede ser combinado con productos provenientes del foto-split del agua para sintetizar hidrocarburos combustibles líquidos, como metanol o nafta.

También la Fotoreducción del CO$\textsubscript{2}$ con H$_2$O en fase gaseosa para producir metano y etileno se ha demostrado recientemente mediante el uso de un catalizador de Cu-Fe/TiO$_2$ que se usó para recubrir fibras ópticas bajo radiación UV-cercana y lejana [Nguyen y Yu, 2008]. El uso de fibras ópticas como soporte de catalizador se encontró que mejoran en forma significativa la velocidad de producción de etileno en un orden de magnitud comparado con el catalizador soportado en vidrio. En otros estudios, científicos alemanes recientemente reportaron que el siliciuro de titanio (TiSi$_2$) como un nuevo prometedor catalizador que separa el agua (split) mediante el uso de luz solar para producir hidrogeno y oxigeno [Ritterskamp, 2007]. Esta investigación reporta la combinación de de dos importantes fuentes de energía para el futuro; la solar y el hidrogeno como combustible. El hidrogeno producido a partir de un proceso fotocatalítico puede ser usado para la reducción indirecta de CO$_2$ a químicos útiles.

Para la conversión de CO$_2$ en combustibles existen tres puntos que requieren atención:

1) El CO$_2$ como una especie de carbón completamente oxidada no contribuirá entálpicamente al producto combustible, debido a que el valor de entalpía del combustible resultante depende solamente del reactivo reductor usado.

2) El costo y disponibilidad del agente reductor debe ser tomado en cuenta

3) El almacenamiento, concentración y transporte del CO2 requiere un consumo de energía.

Respecto a esto, el CO$_2$ únicamente sirve como transportador de energía (para la captura de energía renovable o energía nuclear).

CO$_2$ a Materiales Poliméricos para la Construcción
Argumentando una posible mitigación del CO$_2$ mediante la fijación de este a gran escala, la conversión del dióxido de carbono en materiales de construcción poliméricos puede ser

Finalmente, la reacción entre el glicerol y el dióxido de carbono todavía debe ser optimizada para que pueda llegar a ser una ruta técnica viable para la obtención del carbonato de glicerol. Otra ruta potencial desde el glicerol al carbonato de glicerol es la trans-esterificación del glicerol con un carbonato cíclico (etileno o propileno) simple, seguido del reciclado del glicol resultante por acoplamiento con el CO2. En realidad la idea de combinar los productos naturalmente disponibles y abundantes con el CO2 para formar materiales poliméricos para la construcción es un buen ejemplo de un proceso sustentable que no conduce a un incremento neto de CO2 en la atmósfera.

La reacción de adición del CO2 con el etileno para formar el monómero de alta demanda como lo es el ácido acrílico representa un esquema excelente para agregar valor al CO2. Los proceso industriales actuales para sintetizar al ácido acrílico son energéticamente caros debido a la temperatura requerida para una eficiente catálisis (210-480°C) y además se requieren de múltiples destilaciones para remover las impurezas de aldehídos [Lin, 2001 y Bettahar y cols, 1996]. Aun de más importancia la técnica no es muy amigable desde el punto de vista de la síntesis de acrilatos sustituidos y con la limitante de que la alimentación de carbón puede ser solo propileno. Recientemente, se ha demostrado que la reacción de
adicción de dos moléculas de etileno con CO₂ puede prevenir la formación de enlaces estables M-H y M-O sobre un metal homogéneo complejo, el cual provoca la liberación de un acrilato o de una especie metacrilato posiblemente desde el centro del metal (Aresta y cols, 2007]. Mediante esta ruta el acetato de etilo se ha sintetizado a partir del etileno y el CO₂. Tales descubrimientos pueden ser de gran interés para desarrollar una nueva ruta para la obtención de acrilatos a partir de olefinas y CO₂ sobre catalizadores metálicos.

CO₂ a Química Fina y Fármacos

La producción de químicos a partir del CO₂ varía desde química fina hasta productos en grandes volúmenes de producción. Por ejemplo, El CO₂ reacciona con el amoniaco para producir urea, la cual se produce a gran escala. El CO₂ también puede ser usado como oxidante en la des-hidrogenación oxidativa de hidrocarburos [Saito y cols, 2003], como co-reactante, como solvente, y en una gran variedad de procesos sintéticos. En resumen, las reacciones de adición del CO₂ con epóxidos, alquenos, alcanos y alcoholes para formar químicos de valor agregado.

CAPITULO 2: ANTECEDENTES

TECNOLOGIAS QUE SE VEN FAVORECIDAS POR LOS METODOS DE SEPARACION Y CAPTURA DE CO₂

Algunos de los procesos de producción de energía se ven favorecidos por los métodos de separación y captura del CO₂ estos mejoran su eficiencia. Los procesos más beneficiados son: Reformación de Vapor del Metano (SMR), Proceso de Reformación Mejorado por Sorción de CO₂ (Sorption Enhanced Reforming Process, SER), Gasificación Integrada de Ciclo Combinado (Integrated Gasification Combined Cycle, IGCC),

Reformación de Vapor de Metano (SMR): Este proceso de reformación de vapor de hidrocarburos ligeros es empleado para la producción de hidrogeno. Donde el 50% del hidrogeno que se produce es debido al vapor de agua cuando se utiliza el metano (CH₄) por lo que toma el nombre de Reformación de Vapor de Metano por sus siglas en inglés (SMR). Sin embargo este proceso tiene como subproducto principal al CO₂.
Proceso de Reformación Mejorado por Sorción de CO₂ (Sorption Enhanced Reforming Process, SER): Nació de una modificación al proceso convencional SMR, la cual consistió en agregar un absorbente en el reformador con el objetivo de separar y capturar el CO₂ del gas producido. Al modificar el equilibrio de reacción trae como consecuencia que la reacción en la cual se lleva a cabo la producción de hidrógeno se realice a temperaturas menores a las del método convencional (SMR) [Lopez y Harrison, (2001)].

Gasificación Integrada de Ciclo Combinado (Integrated Gasification Combined Cycle, IGCC): En este proceso se gasifica los componentes del carbón en gas de síntesis el cual está compuesto de monóxido de carbono e hidrógeno. Si este gas está lo suficientemente limpio puede ser usado como un combustible alterno para generar vapor o electricidad.

Sin embargo, un inconveniente para utilizar este proceso es que al usarse el carbón o el coque se incrementan considerablemente las emisiones de CO₂; es aquí donde se utilizan los procesos de captura ya mencionada los cuales son cada vez más eficientes y económicos [Llamas y cols, 2005].

Los materiales absorbentes utilizados en este proceso son de alta temperatura los cuales son absorbentes secos regenerables mejores a los de baja temperatura; los absorbentes de alta temperatura reportados en la literatura son base metales alcalinos y alcalinotérreos [Harrison, 2004].

ABSORBENTES SÓLIDOS DE BAJA TEMPERATURA

Base potasio: Se ha desarrollado un interés particular por generar absorbentes conteniendo metales alcalinos y alcalinotérreos y distribuidos en un soporte. Un ejemplo es el carbonato de potasio cuya captura de CO₂ se representa por la reacción (6):

\[
K_2CO_3(s) + CO_2(g) + H_2O(g) \leftrightarrow 2KHCO_3(s) \] (6)
El uso de carbonato de potasio (K\textsubscript{2}CO\textsubscript{3}) adicionado con otro metal alcalino fue estudiado como un medio regenerativo por el cual se absorbe CO\textsubscript{2} a bajas temperaturas (menos de 145°C) [Hoffman y Pennline, 2001].

Base Magnesio: Recientes investigaciones han demostrado que la carbonatación de compuestos minerales basados en hidróxido de magnesio laminar como la brucita Mg(OH)\textsubscript{2} y la serpentina Mg\textsubscript{3}Si\textsubscript{2}O\textsubscript{5}(OH)\textsubscript{4}, son buenos candidatos para la secuestración de CO\textsubscript{2}. Estos materiales son de bajo costo y junto con su capacidad de carbonatación, hacen que sea un material económicamente viable para la absorción de CO\textsubscript{2}. Esta absorción se lleva a cabo mediante la siguiente reacción (7): [McKelvy, 2001]

\[
\text{Mg}_3\text{Si}_2\text{O}_5(\text{OH})_4 + 3\text{CO}_2 \leftrightarrow 3\text{MgCO}_3 + 2\text{SiO}_2 + 2\text{H}_2\text{O} \quad (7)
\]

Base Sodio: Se ha estudiado el uso del Na\textsubscript{2}CO\textsubscript{3} para la absorción del CO\textsubscript{2} en el proceso de post-combustión el cual se describe mediante las reacciones (8 y 9):

\[
\text{Na}_2\text{CO}_3 (s) + \text{CO}_2 (g) + \text{H}_2\text{O} (g) \leftrightarrow 2\text{NaHCO}_3 (s) \quad (8)
\]

\[
\text{Na}_2\text{CO}_3 (s) + 0.6 \text{CO}_2 (g) + 0.6\text{H}_2\text{O} (g) \leftrightarrow 0.4[\text{Na}_2\text{CO}_3.3\text{NaHCO}_3 (s)] \quad (9)
\]

En donde uno de los productos es una sal y la carbonatación depende de la temperatura y presión a la cual se trabaje. La captura del CO\textsubscript{2} se da en el rango de temperatura de 60-70°C así los materiales se regeneran a 120-200°C [Liang y Harrison, (2003)].

ABSORBENTES SÓLIDOS DE ALTA TEMPERATURA

Absorbentes Naturales (base calcio)

Varios investigadores han estudiado el uso de precursores de CaO tales como la calcita y dolomita como absorbentes de CO\textsubscript{2}. Tanto la calcita como la dolomita son rocas sedimentarias compuestas principalmente por carbonato de calcio (CaCO\textsubscript{3}) y carbonato de calcio magnesio (CaMg(CO\textsubscript{3})\textsubscript{2}), respectivamente. La calcinación de la calcita resulta en
CaO con una capacidad estequiométrica de 0.79 g de CO$_2$/g de absorbente, mientras que la calcinación de la dolomita resulta en una mezcla de CaO-MgO. Se ha desmotado que el MgO no participa en la remoción de CO$_2$ y permanece inerte después de la calcinación. Por lo tanto, la capacidad estequiométrica de la dolomita es de 0.46 g de CO$_2$/g de absorbente. La reacción que representa al oxido de calcio en la captura del CO$_2$ es (10): [Hoffman y Pennline, 2001]

$$\text{CaO(s)} + \text{CO}_2(\text{g}) \leftrightarrow \text{Ca}_2\text{CO}_3(\text{s}) \ (10)$$

Hay muchos estudios sobre la reacción de carbonatación de estos absorbentes y todos concuerdan que la captura de CO$_2$ sucede en dos diferentes pasos: un periodo inicial de carbonatación controlado químicamente y una segunda etapa mucho mas lenta cuya conversión de carbonatación presenta fuertes limitaciones difusionales. Este cambio en la velocidad de reacción se atribuye a la formación de una capa que CaCO$_3$ que rodea al CaO. Cuando esta capa alcanza cierto espesor, la carbonatación del material central es severamente obstaculizada.

El principal problema asociado con los absorbentes naturales basados en Ca es la rápida disminución observada en su máxima capacidad de absorción durante multiciclos carbonatación/calcinación. Abanades y col [Abanades y Alvarez, 2003] estudiaron los límites de conversión en la reacción de CO$_2$ con calcita y los comparó con los trabajos publicados por otros autores. Ellos concluyeron que hay una disminución inevitable en la actividad que se atribuye a la transformación de la microporosidad en macroporosidad que sucede durante los procesos multiciclo. De acuerdo a Grasa y col [Grasa y Abanades, 2006] la capacidad de captura de la calcita calcinada decrece dramáticamente en los primeros 20 ciclos y tiende a estabilizar después de ciclos sucesivos a una conversión residual del 8% que permanece constante después de 500 ciclos.

Sin embargo, si bien tiene una mayor capacidad de absorción de CO$_2$ por unidad de masa que la dolomita, esta ha mostrado ser un absorbente superior en otros aspectos, como su desempeño en multiciclos [Han and Harrison, 1994, Narcida y Harrison, 1996]. La razón de que la dolomita sea más estable que la calcita puede ser por la presencia del MgO inactivo.
el cual evita parcialmente el sinterizado de las partículas de CaO durante la calcinación [Li, 2005].

Johnsen [Johnsen, 2006] ha evaluado las propiedades de absorción en multiciclos de la Dolomita Arctic a diferentes tiempos de exposición, grado de carbonatación y atmósferas y encontró que la degradación sucede bajo todas las condiciones y depende fuertemente del tiempo total de exposición a las elevadas temperaturas de calcinación.

El proceso de absorción de CO₂ con absorbentes basados en Ca son más eficientes si se utilizan presiones elevadas durante la gasificación en un reactor individual [Lin y Ida, 2004], si se usa un reactor autoclave con los absorbentes de calcio se obtienen mejores conversiones a presiones superiores 20MPa y temperaturas mayores a 923°K.

ABSORBENTES SINTÉTICOS

Base calcio
Actualmente, varios esfuerzos se están realizando con el fin de disminuir la pérdida de capacidad de absorción de los absorbentes naturales basados en calcio. Li y col reportaron la síntesis de absorbentes base CaO (CaO 75% soportado sobre 25% de Ca₁₂Al₁₄O₃₃) con una capacidad de 0.45 g de CO₂/g de material que no se degradan bajo multiciclos y condiciones suaves de calcinación [Li, 2005 y Li, 2006]. Similarmente, Feng y col sintetizaron CaO soportado en δ-Al₂O₃ y mostraron que no hay perdida en la capacidad después de nueve ciclos y alcanzaron un rendimiento superior al 90% [Feng, 2006]. Sin embargo, ya que el contenido de CaO es relativamente bajo (4.3%), la capacidad total del absorbente es baja.

Base cerámica
Los óxidos de metal de litio y sodio han sido reportados recientemente como excelentes candidatos para la remoción de CO2 con alta capacidad y estabilidad [Nakagawa y Ohashi, 1998, Ohashi y Nakagawa, 1999, Lopez-Ortiz y cols,2004]. Ejemplo de estos materiales se muestran en las siguientes reacciones:
$\text{Li}_2\text{ZrO}_3(s) + \text{CO}_2(g) \leftrightarrow \text{Li}_2\text{CO}_3(s) + \text{ZrO}_2(s) \ (11)$

$\text{Li}_4\text{SiO}_4(s) + \text{CO}_2(g) \leftrightarrow \text{Li}_2\text{CO}_3(s) + \text{Li}_2\text{SiO}_3(s) \ (12)$

$\text{Na}_2\text{ZrO}_3(s) + \text{CO}_2(g) \leftrightarrow \text{Na}_2\text{CO}_3(s) + \text{ZrO}_2(s) \ (13)$

Base litio

La síntesis de cerámicos conteniendo litio ha sido extensamente estudiada, en particular el zirconato de litio (Li_2ZrO_3) ya que es un material que se utiliza en la industria nuclear puesto que tiene una alta estabilidad térmica, velocidades de liberación, baja expansión térmica, y buena compatibilidad estructural con otros materiales. Investigaciones recientes han encontrado que el Li_2ZrO_3 es un candidato con buenas propiedades como absorbente de CO_2 para alta temperatura, la reacción de Li_2ZrO_3 con el CO_2 es buena y el material puede almacenar cantidades considerables de CO_2. La reacción puede ser regenerada mediante ciclos térmicos [Nair y cols, 2004].

Se ha reportado que el Li_2ZrO_3 puede mantener teóricamente cantidades arriba del 28% en peso a temperaturas altas de acuerdo con la reacción (11).

La alta capacidad de captura y estabilidad en el rango de temperaturas de 723-873 K hacen que este material sea candidato para el proceso de reformación de vapor de metano combinada con absorción de CO_2 (SESMR) [Ochoa-Fernandez, 2006]. Una de las ventajas de este material es que tiene una temperatura de regeneración relativamente baja (750°C) comparado con los absorbentes de origen natural, los cuales tienden a sinterizarse a altas temperaturas. El Li_2ZrO_3 mostró una gran estabilidad en un número importantes de ciclos sin perder su capacidad de absorción, sin embargo una de las desventajas de este material presenta una cinética de absorción muy lenta [Ohashi y Nakagawa, 1999].

Otro material base litio que también posee una alta reactivid hacia el CO_2 a una temperatura de aproximadamente 500°C es el ortosilicato de Litio (Li_4SiO_4) y una velocidad de absorción de aproximadamente 30 veces más rápida que el zirconato de litio a 500 ºC [Masahiro, 2005]. El cual se basa en una reacción química usando óxido de litio. Al
igual que el Li$_2$ZrO$_3$ trabaja en el rango de temperaturas de 450º a 700ºC por lo que puede ser usado en las centrales eléctricas sin tener que bajar la temperatura de operación. Donde el Li$_4$SiO$_4$ realiza una absorción y una emisión inmediata de CO$_2$ [Masahiro, 2005].

Una variante del Li$_2$ZrO$_3$ es el dopaje de este con potasio. Este material fue preparado por el método de reacción en estado sólido de las mezclas de Li$_2$CO$_3$, K$_2$CO$_3$ y ZrO$_2$. La incorporación del potasio al Li$_2$ZrO$_3$ da como resultado un aumento en la velocidad de absorción del CO$_2$, puesto que forma un carbonato fundido (eutéctico) a alta temperatura. El efecto de la temperatura en la absorción depende de los factores de cinética y termodinámica [Xiong, 2005].

Otro método empleado es el de coprecipitación de una solución sólida de metazirconatos de litio y potasio Li$_{2-x}$K$_x$ZrO$_3$ (donde 0<x<2) dando como resultado que la máxima solubilidad del potasio en el Li$_2$ZrO$_3$ es de 0.02 [Pfeiffer y cols, 2007].

Base sodio

Los reportes de este tipo de absorbentes indican que trabajan en un rango de temperatura entre 600 y 700ºC [Lopez-Ortiz, 2004]. Entre los absorbentes sintéticos base sodio existen varios materiales que han sido estudiados, entre estos se encuentra:

Antimonato de sodio (Na$_3$SbO$_4$), Titanato de sodio (Na$_2$TiO$_3$) y Zirconato de sodio (Na$_2$ZrO$_3$), según estos estudios el Na$_2$ZrO$_3$ ofrece la mayor capacidad de absorción comparado con los otros materiales mencionados anteriormente. El Na$_2$ZrO$_3$ presenta buena capacidad de absorción, alta estabilidad térmica y rangos de temperaturas de absorción son 500-700ºC. Se han realizado estudios de la cinética de absorción de CO$_2$ del Na$_2$ZrO$_3$ y se ha demostrado que la fase monoclínica del Na$_2$ZrO$_3$ es mucho más activa que su fase hexagonal [Ochoa-Fernandez y cols, 2007].

Base sodio y litio

Mezclas Li$_2$ZrO$_3$ y Na$_2$ZrO$_3$ fueron preparadas por coprecipitación de las soluciones sólidas de metazirconatos de litio y sodio. Los límites de solubilidad del solio en el Li$_2$ZrO$_3$ y del litio en el Na$_2$ZrO$_3$ son diferentes, puesto que la cantidad de sodio que puede introducirse
en el $\text{Li}_{2-x}\text{Na}_x\text{ZrO}_3$ es del 10% mol, la cantidad de litio en el $\text{Na}_{2-x}\text{Li}_x\text{ZrO}_3$ es de 30% mol puesto que la difusión del sodio o litio es determinada por la estructura y morfología de los compuestos. Sin embargo sabemos que la estructura cristalina del Li_2ZrO_3 es más compacta que la del Na_2ZrO_3. Comparativamente el Na_2ZrO_3 presenta mejor absorción de CO$_2$ que el Li_2ZrO_3 por lo tanto la mezcla de los dos compuestos presenta un comportamiento original en la absorción del CO$_2$ [Pfeiffer y cols, 2006].

CAPITULO 3: HIPOTEIS Y OBJETIVOS

Hipótesis:
El zirconato de litio promovido con Na actúa como un absorbente de CO$_2$ que presenta mayor capacidad de captura de éste y un comportamiento cinético de absorción/regeneración superior, al compararse con respecto al que exhibe el zirconato de litio puro.

Objetivo General:
Sintetizar y caracterizar el zirconato de litio dopado con sodio y evaluar su desempeño como absorbente de CO$_2$ a alta temperatura.

Objetivos Particulares:
- Sintetizar el zirconato de litio por método en estado sólido y doparlo con óxido de sodio por impregnación incipiente.
- Determinar el efecto del promotor en la capacidad de absorción y regeneración del zirconato de litio y la cantidad optima del promotor.
- Determinar las temperaturas mínimas de absorción y de regeneración para el zirconato de litio dopado.
CAPITULO 4: PROCEDIMIENTO EXPERIMENTAL

Síntesis:
Método de reacción en estado sólido:
Se sintetizó el Zirconato de litio (Li$_2$ZrO$_3$) mediante la técnica de reacción en estado sólido, la cual consiste en la mezcla física de los reactivos en un mortero de ágata por un periodo de tiempo considerable hasta que la muestra esté completamente homogénea (aproximadamente 10 min.). Las cantidades de los precursores fueron las estequiométricas y la pureza fue grado reactivo: Li$_2$CO$_3$ SIGMA con una pureza 99.4% y ZrO$_2$ SPECTRUM con una pureza del 99%. La mezcla de precursores fue calcinada a 900°C en un horno Thermolyne F-6000 por un periodo de tiempo de 4h en atmósfera de aire. La reacción que se presenta en el método de estado solidó es la siguiente:

$$\text{Li}_2\text{CO}_3 + \text{ZrO}_2 \leftrightarrow \text{Li}_2\text{ZrO}_3 + \text{CO}_2 \ (14)$$

Impregnación incipiente
El zirconato de litio ya calcinado fue dividido en seis partes iguales. Posteriormente, se preparó una solución acuosa de NaNO$_3$ a partir de la disolución de carbonato de sodio (Na$_2$CO$_3$) Faga Lab con una pureza de 99% en HNO$_3$ empleando cantidades estequiométricas. Se prepararon 4 soluciones de diferente concentración para llevar a cabo la impregnación de cuatro de las seis porciones de Li$_2$ZrO$_3$. La concentración de las soluciones fue calculada en función a la cantidad de Na a agregar para preparar el Li$_2$ZrO$_3$ con una carga de 2, 5, 10 y 15% en peso de Na$_2$O. La nomenclatura utilizada se presenta en la Tabla 2. En esta Tabla también se presenta la cantidad adicionada del promotor equivalente en moles. Ya impregnado el Li$_2$ZrO$_3$ se secó a 80°C por 1h para posteriormente calcinarlo a 900°C durante 2 horas. Las dos porciones restantes se utilizaron como referencia, una se dejó tal como se obtuvo inicialmente y la otra se expuso a las mismas condiciones que las muestras impregnadas (900°C por 2h), para determinar un efecto térmico sobre el desempeño del zirconato de litio. La Figura 1 presenta el diagrama de flujo del método de síntesis utilizado. Todas las muestras se prepararon por duplicado, par determinar la repetibilidad del la técnica de síntesis.
Figura 1: Diagrama de flujo del método de síntesis de las muestras de Li$_2$ZrO$_3$

<table>
<thead>
<tr>
<th>Muestra</th>
<th>Na$_2$O/Li$_2$ZrO$_3$</th>
<th>Na/Li</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primera</td>
<td>Repetición</td>
<td>% W</td>
</tr>
<tr>
<td>Li0</td>
<td>Li0-R</td>
<td>0</td>
</tr>
<tr>
<td>Li0-1</td>
<td>Li0-1R</td>
<td>0</td>
</tr>
<tr>
<td>LiNa-2</td>
<td>LiNa-2R</td>
<td>2</td>
</tr>
<tr>
<td>LiNa-5</td>
<td>LiNa-5R</td>
<td>5</td>
</tr>
<tr>
<td>LiNa-10</td>
<td>LiNa-10R</td>
<td>10</td>
</tr>
<tr>
<td>LiNa-15</td>
<td>LiNa-15R</td>
<td>15</td>
</tr>
</tbody>
</table>

Caracterización:
Las muestras fueron caracterizadas por diferentes técnicas:

Difracción por Rayos X
La fase cristalográfica presente en cada uno de los materiales se obtuvo por difracción de rayos X (XRD por sus siglas en inglés), mediante un difractómetro Phillips XPERT MPD, el cual utilizó una radiación de cobre Cu Kα con un monocromador de grafito. Para obtener
los patrones de difracción se realizó un barrido angular en el intervalo de 2θ desde 5° hasta 80°, con paso de 0.1° y tiempo de exposición de 5 s.

La técnica consiste en hacer incidir un haz de rayos X colimado, con una longitud de onda de 0.5 a 2 Å sobre la muestra. El rayo es difractado en el espectro por las fases cristalinas en función de la distancia interplanar de cada material en particular y el ángulo de difracción 2θ.

Área Superficial BET
El área superficial específica de cada muestra se obtuvo mediante la adsorción de nitrógeno a 77 K, en un equipo Autosorb 1 de Quantachorome Inc. El cálculo del área se realizó utilizando el método de Brunauer, Emmett y Teller (BET).

Análisis del Tamaño de Partícula
El tamaño de partícula fue medido mediante un láser counting Mastersizer 2000 (Malvern Instruments) con un intervalo de medida de 20 nm – 2000 μ. Para la medición del tamaño de partícula de los absorbentes, estos se dispersaron en agua, aunque también puede emplearse alcohol, acetona u otros solventes. Esta técnica consiste en irradiar la superficie de la muestra que se está analizando con un haz láser y recoger la luz dispersada en los distintos ángulos, de manera que cada ángulo da información acerca de la evolución de la rugosidad con un tamaño característico.

Microscopía Electrónica de Barrido
La morfología de las muestras fue estudiada mediante la técnica de microscopía electrónica de barrido (SEM por sus siglas en inglés) mediante difracción de electrones secundarios. Esto consiste en incidir en la muestra un haz de electrones que provoca la aparición de diferentes señales, las cuales son captadas por un detector que nos proporciona información acerca de la naturaleza de la muestra. El análisis se hizo con un microscopio electrónico de barrido JEOL JSM-5800LV con un filamento de tungsteno.
Evaluación como Absorbente de CO$_2$
Para medir la actividad de las muestras como absorbente de CO$_2$ se hizo uso del análisis termogravimétrico (TGA) en una microbalanza analítica TA Q-500. La cual es una técnica donde se mide el cambio de peso de un material utilizando una determinada atmósfera gaseosa, este análisis se realiza en función del tiempo y la temperatura por lo que el estudio puede ser isotérmico, analizando la pérdida de peso durante el avance de la reacción o en función de la temperatura.

El cambio de peso de la muestra es debido a la formación o destrucción de uniones físicas o reacciones químicas durante el incremento de temperatura el cual se efectúa a través de un tratamiento térmico mediante un programa. Las condiciones experimentales bajo las cuales se evaluaron a los materiales sintetizados en este trabajo fueron de 600°C, 80% CO$_2$ en balance 20% Ar y 100sccm para la absorción y de 750°C en aire a 100sccm para la regeneración.

CAPITULO 5: DISCUSION DE RESULTADOS

Estructura Cristalina
En la Figura 2 se presentan los patrones de difracción de Rayos X de las primeras muestras sintetizadas y en la Figura 3 (superior) los patrones de las repeticiones. Como puede observarse entre ambas Figuras, no hay cambios entre las primeras muestras sintetizadas y su correspondiente repetición.

En los patrones de la Figura 2 se puede apreciar que en las muestras sin promotor (Li0, Li0-1) como en la adición con un 2% de Na$_2$O (LiNa-2) solo se hace presente la fase cristalográfica del zirconato de litio (Li$_2$ZrO$_3$) y en las muestras con 5, 10 y 15% de Na$_2$O presentan además de la fase cristalina del Li$_2$ZrO$_3$, la fase del zirconato de sodio (Na$_2$ZrO$_3$). Este comportamiento puede ser explicado utilizando los resultados que reporta Pfeiffer y col [2006]; la estructura del zirconato de litio tiene la capacidad de solubilizar al sodio hasta aproximadamente en un 10% mol. De aquí que la muestra LiNa-2 que contiene 5% mol puede aceptar en su totalidad al sodio en su estructura, provocando que en su patrón de
difracción solo aparezca la estructura de Li₂ZrO₃. Sin embargo, dado que en las muestras LiNa-5 LiNa-10 y LiNa-15 el contenido de Na es considerablemente mayor (~12, 25 y 37% mol), se presenta la estructura de Na₂ZrO₃.

En la Figura 3 (inferior) se presenta una ampliación de los patrones de difracción de las muestras. En la ampliación de la izquierda se compara el patrón XRD del Na₂ZrO₃ con los que contienen carga de promotor. En esta ampliación se puede apreciar que a medida que aumenta el contenido de sodio la intensidad de los picos correspondientes al zirconato de sodio se incrementan, también en estas señales se puede observar que exhiben un desplazamiento hacia valores mayores de 2Θ, el cual se puede atribuir a que la estructura del Na₂ZrO₃ contiene átomos de Li, generando una estructura mixta del tipo LiₓNa₂₋ₓZrO₃. Lo mismo se puede apreciar con el patrón de las muestras con carga de promotor en las señales del Li₂ZrO₃ (ampliación derecha), las señales presentan también un desplazamiento, sin embargo para este caso es hacia valores menores de 2Θ, este desplazamiento se asocia a sodio en la estructura del zirconato de litio, produciendo la estructura mixta NaₓLi₂₋ₓZrO₃. Estos resultados están de acuerdo con los reportados por Pfeiffer y col [2006].

Figura 2. Patrones de difracción de rayos X de las primeras muestras
Figura 3. Patrones de difracción de rayos X de las muestras repetición (superior) ampliación comparando al Na$_2$ZrO$_3$ (izquierda) al Li$_2$ZrO$_3$ (derecha).
Tamaño de cristal
Fue calculado por medio de la ecuación de Scherrer para la primera serie y la de repetición. En la Tabla 3 se presentan el tamaño de cristal para cada una de las muestras. Como puede observarse los datos obtenidos donde se puede observar que el tamaño de cristal varía de 33 a 39 nm. Estos resultados están de acuerdo con los que reporta Lin y cols. [2003], donde el tamaño de cristal para el zirconato de litio dopado con potasio es de aproximadamente 40nm. Considerando tanto los resultados experimentales obtenidos como los reportados en la literatura se puede concluir que la adición de un promotor del tipo de metal alcalino no modifica en forma significativa el tamaño de cristal del zirconato de litio (ver Tabla 3)

Tabla 3: Tamaño de cristal obtenido por la Ecuación de Scherrer y los datos XRD

<table>
<thead>
<tr>
<th>Primera Serie (nm)</th>
<th>Serie repetición (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Li0</td>
<td>32.9</td>
</tr>
<tr>
<td>Li0-1</td>
<td>33.8</td>
</tr>
<tr>
<td>LiNa-2</td>
<td>39.2</td>
</tr>
<tr>
<td>LiNa-5</td>
<td>39.2</td>
</tr>
<tr>
<td>LiNa-10</td>
<td>35.0</td>
</tr>
<tr>
<td>LiNa-15</td>
<td>35.0</td>
</tr>
<tr>
<td>Li0-R</td>
<td>34.1</td>
</tr>
<tr>
<td>Li0-1R</td>
<td>35.7</td>
</tr>
<tr>
<td>LiNa-2R</td>
<td>39.0</td>
</tr>
<tr>
<td>LiNa-5R</td>
<td>39.0</td>
</tr>
<tr>
<td>LiNa-10R</td>
<td>36.2</td>
</tr>
<tr>
<td>LiNa-15R</td>
<td>36.8</td>
</tr>
</tbody>
</table>

Tamaño de partícula
En la Tabla 4 se presentan el tamaño de partícula de cada una de las muestras obtenido por la técnica de dispersión de luz (Mastersizer). Donde al igual que en el tamaño de cristal, la dimensión de la partícula no se ve afectada por la adición del promotor, obteniendo en promedio un tamaño de alrededor de 3 nm. Estos resultados son comparables con los reportados en la literatura [Xiong y cols, 2003].
Tabla 4: muestra el tamaño de partícula de la primera serie y serie repetición.

<table>
<thead>
<tr>
<th>Primera Serie (µm)</th>
<th>Serie repetición (µm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Li0</td>
<td>Li0-R</td>
</tr>
<tr>
<td>Li0-1</td>
<td>Li0-1R</td>
</tr>
<tr>
<td>LiNa-2</td>
<td>LiNa-2R</td>
</tr>
<tr>
<td>LiNa-5</td>
<td>LiNa-5R</td>
</tr>
<tr>
<td>LiNa-10</td>
<td>LiNa-10R</td>
</tr>
<tr>
<td>LiNa-15</td>
<td>LiNa-15R</td>
</tr>
<tr>
<td>3.3</td>
<td>2.7</td>
</tr>
<tr>
<td>2.7</td>
<td>2.7</td>
</tr>
<tr>
<td>3.7</td>
<td>2.8</td>
</tr>
<tr>
<td>2.5</td>
<td>3.9</td>
</tr>
<tr>
<td>2.7</td>
<td>2.9</td>
</tr>
<tr>
<td>3.5</td>
<td>2.2</td>
</tr>
</tbody>
</table>

Área Superficial del Aceptor de CO₂

El área superficial BET estimada tanto para la muestra de Li₂ZrO₃ sintetizado por el método de reacción en estado sólido, como para la muestra de Li₂ZrO₃ promovidas con Na₂O preparadas por impregnación incipiente resultaron menor a 1 m²/g. Estos resultados son de esperarse ya que el tamaño de partícula que presentan las muestras es considerablemente grande lo que generaría un material con muy poca área superficial.

Morfología:

En la figura 4 se presentan las imágenes de la morfología obtenida por microscopía electrónica de barrido para las muestras de la primera serie antes de ser expuestas a un ciclo absorción/regeneración. En donde se puede observar que las partículas presentan una morfología lisa con tamaños entre 2 y 4 µm, también se aprecia que las partículas exhiben aglomerados y principios de sinterización. Al someter las muestras a la evaluación como absorbente (TGA), dos ciclos de absorción/regeneración son llevados a cabo. La Figura 5 presenta la morfología que exhibe cada una de las muestras y donde puede observarse que cambia de lisa a rugosa a medida que se incrementa la cantidad de sodio en la muestra, conservando el tamaño promedio de 2 a 4 µm.

En la figura 6 y 7 se muestran la imágenes se de la serie repetición, la morfología antes y después de ciclos es muy similar a las muestras de la primera serie.
Micrografías de la primera serie:

Figura 4: muestras antes de ciclo a 10kx. Morfología similar con tamaños de partícula de 2 a 4 μm

Micrografías de la primera serie después de ciclos:

Figura 5: muestras después de ciclo a 10kx. Morfología similar con tamaños de partícula de 2 a 4 μm
Micrografías de la serie repetición antes e ciclos:

Figura 6: muestras antes de ciclo a 10kx. Morfología similar con tamaños de partícula de 2 a 4 µm

Micrografías de la serie repetición después de ciclos:

Figura 7: muestras después de ciclo a 10kx de la serie repetición.
Espectroscopia de Energía Dispersa (EDS):
El análisis elemental semicuantitativo se realizó durante su caracterización por SEM, haciendo uso del EDS con la finalidad de determinar los elementos presentes en las muestras. Dando como resultado que las muestras que no contienen promotor están libres de sodio figura 8 y 9, mientras las únicos elementos presentes en estas son oxígeno y zirconia ya que el litio no es detectado por esta técnica. Las muestras que fueron promovidas con sodio presentan un aumento gradual en la cantidad de este que es detectado por EDS y que concuerda con el incremento esperado en la cantidad de sodio en las muestras Figuras 10, 11, 12, 13.

Figura 8: análisis elemental semicuantitativo de la muestra Li0
Figura 9: análisis elemental semicuantitativo de la muestra Li0-1

Figura 10: análisis elemental semicuantitativo de la muestra LiNa-2
Figura 11: análisis elemental semicuantitativo de la muestra LiNa-5

Figura 12: análisis elemental semicuantitativo de la muestra LiNa-10
Figura 13: análisis elemental semicuantitativo de la muestra LiNa-15

Evaluación Como Absorbente de CO2 a Alta Temperatura
Esta evaluación se llevó a cabo mediante un análisis termogravimétrico (TGA), el cual nos permite monitorear el cambio de peso con respecto al tiempo y así determinar la capacidad que tiene el material para absorber y liberar el CO2 bajo las condiciones de reacción (absorción/regeneración).

En la Figuras (14 y 16) se presentan los termogramas de las muestras con y sin promotor de la primera serie, bajo una atmosfera de 80%CO2 y 20% aire con un flujo de 100cm³/min a una temperatura de 650ºC en donde se puede observar que las muestras promovidas con Na poseen una cinética de absorción más rápida que las muestras no promovidas.

En estas Figuras, la tendencia en ambas absorciones es la misma, la diferencia se exhibe en la capacidad de absorción entre ciclos la cual se incrementó para el segundo ciclo, esto debido a la estabilización del material. Este comportamiento coincide con el reportado por Ochoa-Fernández y cols [2006], donde su material es estable a partir del tercer ciclo.
De acuerdo a los datos de las Figuras (14 y 15), la muestra que presenta mayor capacidad es la LiNa-5, seguida por la muestra LiNa-10, mientras que las muestras LiNa-2, LiNa-15 presentan una menor absorción. Finalmente, las muestras libres de sodio exhiben las más bajas capacidades de absorción, aunque entre ellas (Li0 y Li0-1) también presentan variaciones considerables. Estas diferencias pueden explicarse en base a que la muestra Li0-1 presenta un mayor grado de sinterización con respecto a Li0 como se apreció en las micrografías correspondientes debido a su calcinación por 2 horas más a 900°C. Así mismo en las tablas 5 y 6 se muestra el porcentaje de conversión que tuvieron las muestras tanto en el primer ciclo de absorción/regeneración.

El comportamiento que exhibe la muestra LiNa-5 puede ser explicado en función al tipo de fase cristalográfica presente: la estructura de Li₂ZrO₃ se encuentra completamente saturada por átomos de Na y solo contiene una pequeña cantidad de Na₂ZrO₃, el cual también presenta una estructura mixta, átomos de Li en el zirconato de sodio, como se explicó en la sección de estructura cristalina. Mientras que las muestras LiNa-10 y LiNa-15 contienen una mayor cantidad de Na₂ZrO₃ (en fase mixta). Que al parecer es la responsable de disminuir la capacidad de absorción de CO₂, al compararse con la LiNa-5. Sin embargo, LiNa-2 exhibe un comportamiento cinético inicial diferente a las otras muestras promovidas, el cual puede ser asociado a que el Li₂ZrO₃ contiene solo una pequeña cantidad de átomos de Na que no es suficiente para alcanzar la capacidad de LiNa-5. Sin embargo, esta pequeña cantidad de Na fue lo bastante para marcar diferencia tanto en capacidad como en cinética de absorción de CO₂ con respecto a las muestras que no fueron promovidas (Li0 y Li0-1).

Las Figuras (15 y 17), muestran resultados del análisis termogravimétrico donde se presenta la regeneración de las muestras previamente sometidas a absorción (14 y 16) con distintas contenidos de Na. Las muestras promovidas exhiben un comportamiento similar entre ellas con una cinética de regeneración relativamente rápida. Mientras que las muestras sin promover, no pueden compararse dado que presentan absorciones de menor magnitud con respecto a las muestras que contienen sodio. De la misma manera, para el caso de las
muestras libres de sodio, entre ellas no es posible compararse dado que Li0-1 presenta una regeneración marginal producto de su casi nula absorción de CO₂.

Un análisis más detallado en la curva de regeneración de las muestras conteniendo sodio (17), revela que existen dos cambios en la cinética, los cuales son asociados a la presencia de las tres fases cristalinas mencionadas en la sección de estructura cristalina y que explica Gamboa-Hernández [2008]. El inicio de la regeneración se atribuye a la formación de Li₂ZrO₃ puro, seguido por una velocidad de reacción más lenta la cual se asocia a la generación de Na₂ZrO₃ con átomos de Li en su estructura. El comportamiento cinético hacia el final de la regeneración se puede adjudicar a la formación de la fase de Li₂ZrO₃ conteniendo átomos de Na.

Una explicación por la cual la muestra LiNa-5 es la que tiene un mejor desempeño como absorbente es porque la estructura cristalina del Li₂ZrO₃ está totalmente saturada de Na y la fase de Na₂ZrO₃ está en menor cantidad que en las muestras LiNa-10 y LiNa-15 ya que esta fase por ser una mezcla de Na y Li desfavorece a la absorción de las muestras a medida que se incrementa su cantidad.

![Figura 14: primer ciclo de absorción de la serie original](image-url)
Figura 15: regeneraciones del primer ciclo de la serie original

Figura 16: absorción del segundo ciclo de la serie original
Tabla (5): Porcentajes de conversión del primer ciclo de absorción/regeneración.

<table>
<thead>
<tr>
<th>Muestra</th>
<th>Teórico (%)</th>
<th>Primer ciclo</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Absorción (%)</td>
<td>Conversión (%)</td>
<td>Regeneración (%)</td>
<td>Conversión (%)</td>
<td></td>
</tr>
<tr>
<td>Li0</td>
<td>28.75</td>
<td>6.1</td>
<td>21.1</td>
<td>9.7</td>
<td>33.8</td>
<td></td>
</tr>
<tr>
<td>Li0-1</td>
<td>28.75</td>
<td>1.1</td>
<td>3.8</td>
<td>1.2</td>
<td>4.1</td>
<td></td>
</tr>
<tr>
<td>LiNa-2</td>
<td>29.57</td>
<td>19.2</td>
<td>65.0</td>
<td>18.8</td>
<td>63.3</td>
<td></td>
</tr>
<tr>
<td>LiNa-5</td>
<td>30.75</td>
<td>22.3</td>
<td>72.6</td>
<td>22.7</td>
<td>73.9</td>
<td></td>
</tr>
<tr>
<td>LiNa-10</td>
<td>32.58</td>
<td>19.5</td>
<td>61.4</td>
<td>22.2</td>
<td>68.2</td>
<td></td>
</tr>
<tr>
<td>LiNa-15</td>
<td>34.25</td>
<td>16.3</td>
<td>47.5</td>
<td>17.3</td>
<td>50.6</td>
<td></td>
</tr>
</tbody>
</table>

Tabla (6): Porcentajes de conversión del segundo ciclo de absorción/regeneración.

<table>
<thead>
<tr>
<th>Muestra</th>
<th>Teórico (%)</th>
<th>Segundo ciclo</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Absorción (%)</td>
<td>Conversión (%)</td>
<td>Regeneración (%)</td>
<td>Conversión (%)</td>
<td></td>
</tr>
<tr>
<td>Li0</td>
<td>28.75</td>
<td>7.4</td>
<td>25.7</td>
<td>9.9</td>
<td>34.4</td>
<td></td>
</tr>
<tr>
<td>Li0-1</td>
<td>28.75</td>
<td>1.7</td>
<td>6.1</td>
<td>2.3</td>
<td>7.9</td>
<td></td>
</tr>
<tr>
<td>LiNa-2</td>
<td>29.57</td>
<td>22.7</td>
<td>76.8</td>
<td>22.2</td>
<td>75.0</td>
<td></td>
</tr>
<tr>
<td>LiNa-5</td>
<td>30.75</td>
<td>42.6</td>
<td>79.8</td>
<td>22.8</td>
<td>74.1</td>
<td></td>
</tr>
<tr>
<td>LiNa-10</td>
<td>32.58</td>
<td>22.3</td>
<td>68.3</td>
<td>22.4</td>
<td>68.8</td>
<td></td>
</tr>
<tr>
<td>LiNa-15</td>
<td>34.25</td>
<td>18.8</td>
<td>54.9</td>
<td>19.4</td>
<td>56.7</td>
<td></td>
</tr>
</tbody>
</table>

Figura (17) regeneración del segundo ciclo de la serie original.
Haciendo referencia a lo que dice Ochoa-Fernández en 2006 se realizó un multiciclo para la muestra LiNa-5 donde se determinó que a partir del segundo ciclo de absorción/regeneración la muestra es cinéticamente estable manteniendo un porcentaje de absorción similar entre ellos Figura (19).

Figura (18) comparación de los ciclos de LiNa-5 y LiNa-R

Figura 19 prueba multiciclos de LiNa-5 para determinar su estabilidad
Análisis termo gravimétrico de Modo Modulado de Alta resolución:
Así también se realizó en el TGA un análisis modulado de alta resolución figura (20) para determinar las temperaturas mínimas de absorción y regeneración de la muestra LiNa-5.

La absorción se llevó acabo en atmosfera de 80% CO$_2$ y la regeneración en atmosfera de aire; Encontrando que las temperaturas mínimas son 467.78ºC para la absorción y 694.05ºC para la regeneración.

Para corroborar estos resultados se realizó un análisis termodinámico con datos obtenidos del HSC. En este análisis se grafica temperatura contra presión parcial de CO$_2$ figura (21) en donde la zona de carbonatación va de .1 hasta 100. Este análisis dio como resultado que la muestra se empieza a carbonatar a la temperatura de 468ºC aquí también se gráfico la temperatura de 700ºC mostrando que a esa temperatura es cinéticamente viable realizar la regeneración.

Figura 20 análisis modulados de alta resolución de la muestra LiNa-5
CAPITULO 6: CONCLUSIONES

- Se logra obtener el Li$_2$ZrO$_3$ dopado con sodio a diferentes porcentajes.

- La fase cristalográfica del Li$_2$ZrO$_3$ se mantiene como única hasta casi un 5 % W de dopaje. Se revela y se incrementa la fase de Na$_2$ZrO$_3$ (LiNa-5) a medida que se aumenta el porcentaje de sodio en la muestra.

- El tamaño de cristal determinado por Scherrer se incrementa cuando la red cristalina se encuentra saturada por átomos de sodio (LiNa-2 y LiNa-5).

- La morfología de los materiales exhibe que el tamaño de partícula en todas las muestras se encuentra entre 1 y 3 mm, presentando además aglomerados lo que indica evidencia de sinterización.
Las temperaturas de absorción y regeneración mínimas se encuentran alrededor de 470ºC y 700ºC receptivamente.

En general, se determina que el Na en el Li₂ZrO₃ incrementa la velocidad de absorción de CO₂.

El zirconato de sodio formado contiene litio solubilizado en su estructura (desplazamiento de las señales), formando una estructura mixta.

El incremento en el contenido de la estructura mixta de zirconato de sodio con litio en las muestras disminuye la capacidad y cinética de absorción de CO₂.

La muestra de zirconato de litio dopada con 5% de Na es la que presenta mayores conversiones tanto en la absorción como en la regeneración.

CAPITULO 7: REFERENCIAS

Belgium, 3-10. 2002

Calatayud Mónica Tesis de licenciatura “Adsorción de moléculas de metanol en una superficie sólida” Universidad Jaumel, 2000, España.

Cooper y Alley (2002) EPA ”Métodos de control para emisiones de compuestos orgánicos volátiles por fuentes fijas”

DOE (2004) “Carbon Sequestration R & D,

Energy Information Administration (EIA), Annual Energy Outlook 2004

“Emisiones a la atmósfera”

Heinz Wolfgang Haring “Industrial Gases Processing”

Liang Y. y Harrison D. P., (2003) “Carbon Dioxide Capture Using Dry Sodium-Based Sorbents” Gordon A. and Mary Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, Louisiana 70803 R. P. Gupta, D. A.

Narcida A. y Harrison D.P. (1996) “Characteristics of the reversible reaction between CO2(g) and calcined dolomite” Chemical Engineering Science, 146:149-162

Pfeiffer H., González G., Enriqueza M., (2007) “Synthesis and CO2 capture evaluation of Li2-xKxZrO3 solid solutions and crystal structure of a new lithium–potassium zirconate phase”

Pfeiffer H. Lima E. y Bosch P., (2006) “Lithium-sodium metazirconate solid solutions, Li2-xNaxZrO3 (0<x<2) a hierarchical architecture” Chemistry of Materials 18, 2642-2647

Protocolo de Kyoto de la Convención Macro de las Naciones Unidas sobre el Cambio Climático 1998.

