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Abstract 

This paper focuses on stress analysis  in  classical  double  lap,  adhesively  

bonded  joints  having  constant  layer  thicknesses. Several analytical methods 

found in the literature do not provide adequate information on stresses at the 

adherend/adhesive interfaces. In these methods, the adhesive thickness is assumed 

to be small compared to that of the adherends and the stresses to be uniform 

through the adhesive thickness. Herein, the model proposed by the authors can be 

considered as a stacking of Reissner–Mindlin plates (six plates for a double lap 

joint). The equations based on stacked plates were applied to the geometry of a 

symmetrical, double- lap, adhesively bonded joint. Finally, the model has been 

validated by comparing the model results with those of a finite element calculation. 

Introduction 

Structural designers are interested in the strength evaluation under 

service conditions. A reliable prediction of stresses at locations where a high risk 

of crack initiation exists is thus a necessary step in designing mechanical 

structures. Simplified models [1–5] and solid finite element calculations [6,7] 

show that in an adhesive joint,  both  shear and  normal  stresses  reach  their  

maximum  value  in the vicinity of the bond edges. These stress concentra- tions 
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often lead to the joint failure. In an adhesive joint, three kinds of failure are 

possible. The first is adhesive failure, which occurs at the adherend/adhesive 

interface. The second is cohesive failure, which occurs in the adhesive. The last 

kind of failure is mixed: it starts out as an adhesive crack and then quickly 

becomes a cohesive failure. 

In the majority of  models  employed  for  adhesive joints,  stresses  are  

considered  constant  through  the  layer  thickness  [1,8–10].  In  addition,  the  

shear  stress   in the adhesive layer is often taken as a linear function of the 

difference between the displacement of the outer adherend and the  

displacement  of  the  inner  adherend  (see Fig. 1). These models, in classical 

terms are called shear lag models. Their constitutive equations are detai-  led in 

Appendix A. In order, to correctly estimate the failure in the adhesive layer, a 

more complex model is needed for calculating the stresses at the 

adhesive/adherend interfaces. 

A more complex model is the layerwise model called M4-5N (multi-particle 

model of multi-layered materials with five kinematic fields per layer for an N layer 

laminate). This model belongs to the family of multi-particle models developed in  

[11–17].  In  [14],  Hadj-Ahmed  et  al.  used a   layerwise   model   to   analyse   

the   variations   on  the  
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interlaminar shear stresses due to geometry changes in an adhesive joint. 

Their model provides more accurate interlaminar shear stresses than a shear 

lag model but it cannot determine the interlaminar normal stresses. The M4-5N 

is more complex than the previous model and is similar to Pagano’s local model 

[18]. By applying this model, the multi-layer is modelled by a stacking of 

Reissner plates [19] (one plate for each layer) coupled by inter- laminar stresses 

(shear and normal stresses). Its equations are obtained by adapting the 

Hellinger–Reissner varia- tional formulation [20]. For its validation, the following 

consideration was taken into account: the results of finite element analysis 

represent the standard to which all other results are compared, and when a new 

method of analysis yields similar results to those of finite element analysis, the 

new method is considered adequate. The comparison between the model 
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results and those of solid finite elements performed by Carreira et al. validated 

the model for free edge problems [17]. The main advantages of using the M4-5N 

model rather than solid finite elements is the enormous difference in 

computational  cost  and  the lack of stress singularities at the interfaces. Since 

the inter- laminar stresses of the model are finite, a maximum stress criterion 

has been proposed to predict delamination onset  in [16,21] for free edge 

delamination tests with carbon- epoxy laminates. The model predictions proved 

to be very accurate. 

In the present paper, the M4-5N equations are applied    to evaluate the 

stress  state  in  an  adhesively  bonded  joint. The adhesive is considered as a 

plate rather than an interface as proposed in the shear lag models. The 

adhesive has then two interfaces in the model. The interlaminar stresses at 

these interfaces are a priori different. The problem is formulated under the 

follow-ing simplifying assumptions: (i) the adhesive joint is symmetrical, which 

significantly reduces the number of primary unknowns in the problem; and (ii) 

the adhesive joint is in a state of plane strain. The results of the M4-5N model, a 

shear lag model and a commercial finite ele-ment software are compared in 

order to prove the accuracy of the M4-5N and its advantages over the other 

model. 

This paper is divided into three sections. The first one shows the model 

equations applied to the mechanical problem of a double-lap adhesively bonded 

joint. In the second section, a differential equation set is obtained and is solved 

by means of a variational formulation. In the last section, the results of the M4-
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5N model are compared with those of a 3D finite element calculation and a 

shear lag model [1]. In this comparison, only the interlaminar stresses at the 

adhesive–adherend interfaces are considered.  

The three-dimensional object studied in this work is a symmetrical, double 

lap adhesive joint (the number of layers is n     6; see Fig. 1). 

The layers are numbered from 1 to 6 from the bottom to the top. Layers 1 

and 6 are the outer adherends, and layers  3 and 4 constitute the inner 

adherend. The 2nd and the 5th layers serve to model the adhesive. The lay up 

direction is z and the tensile force F is applied in the x-direction. The overlap  

length  is  l.  In  each  layer    and    are  the bottom, the top and the 

mid-plane z coordinates ,  respectively.  The thickness of  layer  i  is  

the bottom, the top and the mid-plane z coordinates  respectively. The 

thickness of layer i is then  . In this section, the equations of the M4-

5N model are applied to this problem and very few demonstra-tions of the model 

equations are provided since all the details of the construction of the model can 

be found in [12,16,17].  

The first step in building the model is the approximation of the stress field 

 in each layer by means of z-polynomials [12,17]. The y coordinate and 

vector components on the y-direction do not appear in any of the equations because 

of the plane strain hypothesis, except for . For the components  and 

 of the stress field in layer i, two first degree z-polynomials are chosen. The 

degree of the polynomial approximation of the other stress components are deduced 
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from the three dimensional equilibrium equations: 

 

Let us remark that the second equation is automatically verified. 

In this manner, in each layer i the degree of the  and 

polynomials are 2 and 3, respectively. The polynomial approximation of the stress 

field in layer i is then 

 

where the family  is a basis of third-degree z-polynomials: 
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The coefficients of these polynomials that appear in Eq. (2) are 
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and are related to the following generalized internal forces: 

membranar forces in layer i: 

 

bending moment in layer i: 

 

vertical shear force in layer i: 

 

interlaminar shear stress at interface : 

  

and interlaminar normal stress at interface  

 

By introducing the polynomial approximation into Eq. (1), one obtains the 
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generalized equilibrium equations for each layer  

 

Generalized displacements and strains 

The generalized displacements associated with the equilibrium conditions in 

Eqs. (10)–(12) are [12,17]: 

 the membranar displacement of layer i, denoted by  

 

where U1 is the component of the 3D displacement in the x-direction. 

the rotation fi1ðxÞ of layer i: 

 

the out-of-plane displacement  of layer i:  

 



https://cimav.repositorioinstitucional 

11 

where U3 is the component of the 3D displacement in the z-direction. The 

generalized strains of the model are deduced from the   generalized   displacements   

and   are   related   to the generalized internal forces as follows: 

 

where and  and  

 Generalized constitutive equations 

The constitutive equations are [12,17]: 

membranar behavior of layer i (1⩽i⩽6): 

 

in-plane bending behavior of layer i (1⩽i⩽6): 

 

out of-plane shear behavior of layer i (1⩽i⩽6): 

http://www.sciencedirect.com/science/article/pii/S0143749608000195?via%3Dihub#bib12
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shear behavior of interface i,i+1 (1⩽i⩽5): 

 

 

and peeling behavior of interface i,i+1 (1⩽i⩽5): 

 

where  are the components of the fourth order 

compliance tensor, . Let us point out 

that in the proposed model, the interfaces of the joint are coupled by the interlaminar 

constitutive equations. 

2.4. Generalized boundary conditions 

Let us now determine the boundary conditions of the problem. First, the 

geometry of the problem is reduced in order to apply easily the model equations 
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(see Fig. 2). This geometry simplification requires an additional analysis for the 

selection of the pertinent boundary conditions to the new geometry. 

 

Generalized boundary conditions 

Let us now determine the boundary conditions of the problem. First, the 

geometry of the problem is reduced in order to apply easily the model equations 

(see Fig. 2). This geometry simplification requires an additional analysis for the 

selection of the pertinent boundary conditions to the new geometry. 

At the edges of the multilayer, the following boundary conditions [12,17] must 

be satisfied 

http://www.sciencedirect.com/science/article/pii/S0143749608000195?via%3Dihub#fig2
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where T1l, T3l, T1r and T3r are the components of the external surface forces 

applied at the edges of the multilayer, superscripts l and r refer to the left and right 

edges, respectively. At the left edge (x=0), layers 2–5 are stress-free but layers 1 

and 6 are subjected to a mechanical load which must be expressed in terms of 

generalized fields: 

the selection of the values of N11i(0) and Q1i(0) is obvious: 

 

where b is the width of the joint; 

the selection of the correct value of M11i(0) is not so simple. For simplicity 

sake, the bending moment in layers 1 and 6 is neglected. 

At the right edge (x=l), layers 1,2,5 and 6 are stress-free but layers 3 and 4 

are subjected to a mechanical load which must be expressed in terms of generalized 
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fields: 

the selection of the values of N11i(l) and Q1i(l) is obvious: 

 

due to the symmetry at the z=0 plane, it is better to chose zero rotations 

instead of bending moments. 

In short, the boundary conditions are 

 

3. Resolution of the model equations 

The resolution of the model equations is similar to that made by Diaz et al. 

in [23]. In all, we have introduced 86 unknown fields: 

 

http://www.sciencedirect.com/science/article/pii/S0143749608000195?via%3Dihub#bib23
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and 86 equations (18 equilibrium conditions in Eqs. (10)–(12), 28 equations 

that relate the generalized strains to the generalized displacements in Eq. (16), and 

40 constitutive laws in Eqs. (17)–(21)). 

To simplify the resolution of the problem equations, we have reduced the 

number of unknowns by applying the symmetry with respect to the z=0 plane. By 

making use of this symmetry and replacing the generalized strains in Eqs. (17)–

(21) by their expressions in Eq. (16), we obtain 29 unknowns: 

 

Let us remark that τ3,4 is zero and therefore it is not considered as an 

unknown of the problem. The 29 equations that help to determine these unknowns 

are 

 

Let us define an eight size vector γ which components are 

where 1⩽i⩽3 and 1⩽j⩽2. A last simplification of the problem can be obtained by 

expressing the 29 unknowns in Eq. (25) as linear functions of the components of 

vector γ. This is performed by following the steps detailed in Appendix B. Using 

these steps, the following set of eight second-order differential equations is 

obtained [23]: 

http://www.sciencedirect.com/science/article/pii/S0143749608000195?via%3Dihub#fd9
http://www.sciencedirect.com/science/article/pii/S0143749608000195?via%3Dihub#fd12
http://www.sciencedirect.com/science/article/pii/S0143749608000195?via%3Dihub#fd13
http://www.sciencedirect.com/science/article/pii/S0143749608000195?via%3Dihub#fd13
http://www.sciencedirect.com/science/article/pii/S0143749608000195?via%3Dihub#fd13
http://www.sciencedirect.com/science/article/pii/S0143749608000195?via%3Dihub#fd12
http://www.sciencedirect.com/science/article/pii/S0143749608000195?via%3Dihub#fd20
http://www.sciencedirect.com/science/article/pii/S0143749608000195?via%3Dihub#sec2
http://www.sciencedirect.com/science/article/pii/S0143749608000195?via%3Dihub#bib23


https://cimav.repositorioinstitucional 

17 

(27)γ″(x)=M·γ(x), 

where M is a constant (8×8) size matrix. The coefficients of this matrix are 

functions of the mechanical and geometrical characteristics of the adhesive joint. 

The resolution of the differential equation set (27) requires 2×8 boundary 

conditions that are deduced from the boundary conditions in Eq. (23) 

In order to solve the differential equation set in Eq. (27). The [0,l] interval is divided 

into N subintervals [ap,ap+1] (0⩽p⩽N). In each subinterval, the components of γ are 

approximated by linear x-functions. Eq. (27) and a varational formulation lead to 

resolving the following set of 8×(N-1) linear algebraic equations: 

where R is an 8(N-1)×8(N-1) size constant matrix, c an 8(N-1) size constant vector 

http://www.sciencedirect.com/science/article/pii/S0143749608000195?via%3Dihub#fd21
http://www.sciencedirect.com/science/article/pii/S0143749608000195?via%3Dihub#fd19
http://www.sciencedirect.com/science/article/pii/S0143749608000195?via%3Dihub#fd21
http://www.sciencedirect.com/science/article/pii/S0143749608000195?via%3Dihub#fd21
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and ξ an 8(N-1) size unknown vector. The components of ξ are the values of 

the γ components at discrete points ap. The system stiffness matrix R is a sparsely 

populated matrix and is stored by means of the skyline storage scheme [24]. This 

technique allows a considerable saving in storage. 

The equilibrium and constitutive equations provide the nodal values of the 

remaining unknown model fields. 

4. Applications 

In this section, we compare the results of our model with those of a shear lag 

model and a finite element calculation by means of the software SAMCEF 

(SAMTECH, Liege, Belgium). For the comparison with the shear lag model, we only 

compare the shear stresses in the adhesive layer. In the adhesive, the shear lag 

model yields a mean shear stress τ(x) expressed by 

 

where 

 

The determination of this analytical solution is provided in Appendix A. For the 

numerical applications, we consider two types of joints: a homogeneous joint (same 

mechanical characteristics for adherends 1 and 3) and a heterogeneous joint 

http://www.sciencedirect.com/science/article/pii/S0143749608000195?via%3Dihub#bib24
http://www.sciencedirect.com/science/article/pii/S0143749608000195?via%3Dihub#sec1
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(different mechanical characteristics for adherends 1 and 3). The mechanical 

properties required to calculate the shear stress by means of Eq. (30) are shown 

in Tables 1 and 2 for the homogeneous and heterogeneous joints, respectively. For 

both joints, the overlap legth is l=40mm, the width is b=10mm, and the applied force 

is F=5000N. Our comparisons between the different calculation techniques applied 

to these joints focus on the values of the shear and normal stresses in the adhesive.  

 

For our M4-5N model calculations, we used an 80-node mesh along 

the bond length. The node density was greater at the ends of the bond. 

 Comparison of the interlaminar shear stresses 

 Homogeneous adhesive joint 

According to Goland and Reissner [2], a shear lag model is valid 

whenever Gec/Gce⩾10; where r,G and Gc are the shear moduli of the adherend and 

adhesive, respectively, and e and ec are the corresponding thicknesses. In this case 

we can assume that the adhesive is subjected mostly to shear stresses, whereas the 

adherends are subjected mostly to tensile stresses. In our application example the 

http://www.sciencedirect.com/science/article/pii/S0143749608000195?via%3Dihub#fd22
http://www.sciencedirect.com/science/article/pii/S0143749608000195?via%3Dihub#tbl1
http://www.sciencedirect.com/science/article/pii/S0143749608000195?via%3Dihub#bib2
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ratio Gec/Gce is 8.7. This means that the Goland and Reissner condition is not 

verified but since this value is close to 10, one may think that the shear lag model 

could provide a fairly good approximation of the stress field. 

Figs. 4 and 5 reveal that the shear lag model provides the same solution at 

interfaces 1,2 and 2,3 and slightly overestimates the maximum shear stress values 

predicted by the finite element calculations. In addition, these maxima are reached 

exactly at the bond ends. Our M4-5N model provides a very accurate and better 

approximation of the interlaminar shear stresses. Besides, our model and SAMCEF 

reach the maxima at almost the same places. We can note herein that even if the 

joint is symmetrical  and balanced , our model and 

SAMCEF provide both different maximum values of the shear stress at the left and 

at the right ends of the adhesive. 

 

 

http://www.sciencedirect.com/science/article/pii/S0143749608000195?via%3Dihub#fig4
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The ratio Gec/Gce is now 0.5. We remark in Figs. 6 and 7 that the 

difference between the shear lag solution and the finite element calculation 

is quite significant. On the contrary, our M4-5N model gives once again an 

accurate prediction. It should be pointed out that for this joint, the maximum 

values of the shear stress at the two ends are very different. 

 Comparison of the interlaminar normal stresses 

We are only interested herein in a heterogeneous adhesive joint. The 

stresses resulting from a finite element calculation are often singular, i.e. the 

maximum stress value depends on the level of mesh refinement. In order to make a 

comparison between the finite element calculation and our model, the meshing is 

refined in such a way that the stress singularity is not very significant. Let us recall 

that our mesh has five rows of elements in the adhesive layer. 

Figs. 8 and 9 display the normal stress at interfaces 1,2 and 2,3, respectively. 

We can observe that the normal stress is zero on nearly the entire overlap. Normal 

stress concentrations are confined to a very small distance from the bond ends. In 

our model, the maximum values are reached at exactly the end of the bond. The 

model results converge and do not exhibit any singularity [17,23].  

http://www.sciencedirect.com/science/article/pii/S0143749608000195?via%3Dihub#fig6
http://www.sciencedirect.com/science/article/pii/S0143749608000195?via%3Dihub#fig8
http://www.sciencedirect.com/science/article/pii/S0143749608000195?via%3Dihub#bib17
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Adams and Wake [6] showed that even if the joint is symmetrical, external 

adherends bend in the vicinity of the bond edges. The bending moments involve a 

high normal compressive stress at the left edge (x=0) and wrenching at the right 

edge (x=l). For a single lap adhesive joint, these interlaminar normal stresses are 

very significant. The normal and shear stresses calculated by our model and 

SAMCEF are similar. Moreover, for our model, at each edge the maximum values of 

normal stresses at interfaces 1,2 and 2,3 are different. 

5. Conclusion 

In this paper, we have proposed a layerwise model for calculating the 

interlaminar stresses in a symmetrical, double lap adhesively bonded joint. The 

model equations were solved by means of a finite element technique. For its 

validation, we have compared its results to those of a solid finite element analysis: 

the standard method by which correctness of other methods is judged. 

http://www.sciencedirect.com/science/article/pii/S0143749608000195?via%3Dihub#bib6
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Through the use of two examples, we have shown that our model yields an 

accurate prediction of the maximum values of both the interlaminar shear and 

normal stresses, particularly when the joint does not satisfy the Goland and Reissner 

condition. In this case, we have shown that a shear lag model does not predict 

correctly the maximum stress values. Furthermore, as opposed to finite element 

calculations, our model provides finite maximum values of the interlaminar stresses. 

In this manner, our model and a maximum stress criterion may predict the joint 

failure and this prediction may be as accurate as those proposed in [21,22] for 

carbon-epoxy laminates subjected to a tensile load. Other advantages of our model 

over classical finite element calculations are the reduced computation time and ease 

of calculation. In a subsequent paper, several mechanical tests will be performed in 

order to determine a failure criterion for adhesively bonded joints by means of the 

model shown in the present paper. 

Appendix A. Longitudinal shear stress in the adhesive layer (shear lag model) 

For an adhesive joint, a shear lag model assumes that the shear stress in the 

adhesive is proportional to the difference between the displacements of the outer 

adherend (layer 1) u1(x) and the inner adherend (layer 3) u3(x): 

 (A.1) 

The elastic behavior of the adherends leads to: 
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(A.2) 

Thus, Eq. (A.1) becomes 

 

where σ1(x) and σ3(x) are the tensile stresses in adherends 1 and 3, 

respectively; E1 and E3 are the elastic moduli of adherends 1 and 3, respectively. 

The equilibrium equations are 

 

where e1 and e3 are the thicknesses of adherends 1 and 3, respectively. The 

boundary conditions are 

  

where b is the width of the joint. By eliminating σ1(x) and σ3(x) from Eqs. 

(A.3) and (A.4), we obtain: 

 

Let us define 

http://www.sciencedirect.com/science/article/pii/S0143749608000195?via%3Dihub#fd23
http://www.sciencedirect.com/science/article/pii/S0143749608000195?via%3Dihub#fd24
http://www.sciencedirect.com/science/article/pii/S0143749608000195?via%3Dihub#fd24
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By making use of Eqs. (A.3) and (A.5), the resolution of Eq. (A.6) provides the 

expression of τ in Eq. (30). 

Appendix B. Simplification of the model equations 

The components of γ 

 

are called the primary unknowns of the problem. In this section, the steps to 

follow for writing the 29 unknowns in (25) as linear functions of the primary 

unknowns are described. 

(1) 

By using Eq. (20) (written for 1⩽i⩽2) the vector (τ1,2,τ2,3)t can be written as 

the multiplication of a 2×8 constant matrix by the γ vector. 

(2) 

Eq. (21) (written for 1⩽i⩽3) shows that the expression of νi,i+1 is a linear 

combination of u3k. Furthermore, u3i′ is given from Eq. (19) (written for 1⩽i⩽3) as a 

linear algebraic (l.a.) equation including the primary unknowns. By deriving Q1i′ with 

respect to x in the equilibrium equation (12) (written for 1⩽i⩽3) and by applying the 

equations described above in this step, we obtain the expression of Q1i″ as an l.a. 

equation involving the γ components. 

(3) 

We then write the generalized force N22i as a l.a. function of N11i by means of 

http://www.sciencedirect.com/science/article/pii/S0143749608000195?via%3Dihub#fd24
http://www.sciencedirect.com/science/article/pii/S0143749608000195?via%3Dihub#fd27
http://www.sciencedirect.com/science/article/pii/S0143749608000195?via%3Dihub#fd22
http://www.sciencedirect.com/science/article/pii/S0143749608000195?via%3Dihub#fd20
http://www.sciencedirect.com/science/article/pii/S0143749608000195?via%3Dihub#fd16
http://www.sciencedirect.com/science/article/pii/S0143749608000195?via%3Dihub#fd17
http://www.sciencedirect.com/science/article/pii/S0143749608000195?via%3Dihub#fd15
http://www.sciencedirect.com/science/article/pii/S0143749608000195?via%3Dihub#fd11
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the l.a. equation appearing in the second line of relation (17) (written for 1⩽i⩽3). 

(4) 

After this step, we can write u1j+1′-u1j′ as a linear combination of the 

forces N11i by means of the first line in Eq. (17) (written for 1⩽i⩽3). 

(5) 

By deriving with respect to x the expressions of u1j+1′-u1j′ obtained from the 

previous step, we can write u1j+1″-u1j″ as a l.a. equation involving the primary 

unknowns. As a matter of fact, N11i′ are l.a. functions of the shear 

stresses τj,j+1 (see equilibrium equation (10) written for 1⩽i⩽3), which were 

expressed in step 1 as l.a. functions of the γ components. 

(6) 

We then write the generalized moment M22i as a l.a. function of M11i by 

means of the l.a. equation appearing in the second line of relation (18) (written 

for 1⩽i⩽3). 

(7) 

After this step, we can write χ11i=φ1i′ as a l.a. of M11i by means of the first line 

in Eq. (18) (written for 1⩽i⩽3). By deriving the expression of φ1i′ with respect to x and 

by using the equilibrium equations (11) (written for 1⩽i⩽3), we obtain the expression 

of φ1i″as a l.a. function involving γ. 

Steps 2,5 and 7 yield the differential equation set written in Eq. (27). 
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