CENTRO DE INVESTIGACIÓN EN MATERIALES AVANZADOS
DEPARTAMENTO DE ESTUDIOS DE POSGRADO

“EFECTO DE LA ATMOSFERA DE SINTERIZACIÓN SOBRE LAS PROPIEDADES MEcáNICAS DE LA ALEACIÓN FeBCCr EMPLEADA COMO RECUBRIMIENTO HARDFACING PARA IMPLEMENTOS AGRíCOLAS DE ACERO AL BORO”.

TESIS
QUE PARA OBTENER EL GRADO DE MAESTRO EN CIENCIA DE MATERIALES
Presenta:
Ing. Fernando Valenzuela de la Rosa

ASESOR:
Dr. Carlos Domínguez Ríos

CHIHUAHUA, CHIH. Julio, 2017
RESUMEN.

En el proceso de metalurgia de polvos para la producción de partes, una etapa muy importante es la sinterización y dentro de esta etapa las atmosferas de sinterización tienen un papel relevante, ya que pueden afectar las propiedades de resistencia al desgaste, mecánicas y de resistencia a la corrosión de los recubrimientos hardfacing utilizados sobre acero al boro, con un 0.00175 % en peso de boro, para implementos agrícolas, para esto se utilizarán seis atmosferas diferentes, las cuales contendrán los gases principales producidos en los hornos de combustión a gas natural o LP, con los que se cuentan en la empresa Renyson, la empresa solicitante del proyecto, estas atmosferas se comprarán de un proveedor comercial, esto para asegurar la pureza de las mismas y que no existan efectos no contemplados.

La evaluación del efecto de las atmosferas de sinterización, así como el efecto de la velocidad de enfriamiento, se realizará por medio de pruebas mecánicas, tales como: microdureza como nanoidentación, puesto que estas propiedades se han relacionado históricamente con la resistencia al desgaste, esta última propiedad se evaluará de acuerdo a la norma ASTM G65 la que nos brindará información respecto a la vida útil del implemento agrícola, esta propiedad será la que tendrá un mayor énfasis, la caracterización estructural se realizará con el uso de las técnicas de microscopía óptica, microscopía electrónica de barrido y de difracción de rayos X, para identificar las diferencias en las fases presentes en el recubrimiento al modificar la atmósfera empleada.

Con las técnicas de microscopía óptica y microscopía electrónica de barrido se observó que la microestructura del recubrimiento consiste en fases duras rodeadas por una fase eutéctica laminar para las enfriadas en aire quieto y en forma de esqueleto para las enfriadas en agua, y con la técnica de difracción de rayos X, se determinó que las fases duras son del tipo: M_2B, M_7C_3, $M_{23}C_6$, donde M puede ser: Fe, Cr o Mn.

La caracterización de las propiedades mecánicas arrojo que la mayor microdureza se obtuvo con la atmósfera de sinterización de: 50 % CO2 – 50 % CO, al igual que la mayor nanodureza se
obtuvo con la misma atmósfera de sinterización y la mejor resistencia al desgaste se obtuvo con las muestras sinterizadas en atmósfera de: 100 % CO$_2$.

Con estos resultados podemos observar que la resistencia al desgaste, no mantiene una relación lineal con la dureza de un material, sino que la microestructura, tiene una gran importancia, al momento de desarrollar recubrimientos o materiales para aplicaciones susceptibles al desgaste.
Tabla De Contenido.

Lista De Figuras .. viii

Lista De Tablas .. xiii

Agradecimientos .. xiv

Reconocimientos ... xv

1. Introducción .. 1

1.1. Justificación ... 1

1.2. Hipótesis .. 3

1.3. Objetivo General ... 3

1.4. Objetivos Particulares .. 3

2. Fundamentos Teóricos ... 4

2.1 Técnicas de Caracterización ... 4

2.1.1. Microscopía Óptica .. 4

2.1.2. Microscopía Electrónica De Barrido ... 5

2.1.3. Difracción De Rayos X ... 6

2.1.4 Ensayo De Microdureza Vickers ... 7

2.1.5. Ensayos De Nanodureza ... 8

2.1.5. Resistencia Al Desgaste ... 11

2.2 Hardfacing ... 12

2.2.1. Soldadura Por Arco Eléctrico (Arc Welding) 14

2.2.1.1. Soldadura Por Arco Con Coraza De Fundente (Flux Cored Arc Welding) 14
2.2.1.2. Soldadura Por Arco Metal Gas (Gas Metal Arc Welding) 15
2.2.1.3. Soldadura Por Arco Con Electrodo De Tungsteno Y Gas Inerte (Gas Tungsten Arc Welding) .. 16
2.2.1.4. Soldadura Por Arco Con Plasma (Plasma Arc Welding) 17
2.2.1.5. Soldadura De Arco Con Coraza Metálica. (Shielded Metal Arc Welding). 18
2.2.2. Soldadura Por Antorcha .. 19
2.2.2.1. Soldadura Por Arco Sumergido (Submerged Arc Welding). 19
2.2.2.2. Soldadura Por Oxiacetileno. (Oxy/Fuel Gas Welding) 20
2.2.3. Otros Procesos De Soldadura ... 23
2.2.3.1. Soldadura Eléctrica Asociada Con Escoria Fundida (Electroslag welding). ... 23
2.2.3.2. Soldadura Por Láser (Laser Beam Welding) .. 24
2.2.3.3. Procesamiento por fricción-agitación (Friction stir processing) 25
2.2.3.4 Soldadura Por Haz De Electrones (Electron Beam Welding) 26
2.2.3.5 Soldadura En Horno (Furnace Braze) .. 27

2.3. Metalurgia De Polvos ... 28

2.3.1. Sinterización ... 30
2.3.1.1. Hornos Continuos .. 30
2.3.1.2. Hornos Por Lote ... 31
2.3.1.3. Hornos De Sinterización En Vacío .. 31
2.3.1.4. Propósito De Las Atmosferas De Sinterización .. 32
2.3.1.5. Descripción De Las Atmosferas De Sinterización 32
2.3.1.5.1. Hidrogeno ... 32
2.3.1.5.2. Amonio Disociado ... 33
2.3.1.5.3. Gases De Hidrocarburos Parcialmente Combustionados 33
2.3.1.5.4. Nitrógeno.. 33
2.3.1.6. Antecedentes Termodinámicos De Las Atmosferas De Sinterización....... 33
2.3.1.7. Reacciones De Carburización-Decarburización.. 36
2.3.1.8. Sinterización De Fase Líquida .. 38
2.3.1.9. Sinterización De Polvos Sin Compactar. ... 39
2.3.2 Aleaciones De Polvos Metálicos Resistentes Al Desgaste............................... 39
2.3.2.1. Carburos De Tungsteno Cementados.. 39
2.3.2.2. Polvos Metálicos De Acero Grado Herramienta... 40
2.3.2.3. Polvos Metálicos De Materiales Compuestos De Matriz Metálica.............. 42

3. Metodología Experimental... 42

3.1 Preparación De Suspensión.. 42

3.2 Aplicación De Suspensión Sobre Acero Al Boro, con un 0.00175 % en peso de boro... 43

3.3 Pruebas de secado. .. 44

3.4 Pruebas de sinterización. .. 45

3.5 Preparación Y Observación En Microscopía Óptica... 48

3.6 Preparación Y Observación En Microscopía Electrónica De Barrido.............. 49

3.7 Difracción De Rayos X... 49

3.8 Pruebas De Microdureza.. 50

3.9 Pruebas De Nanodureza.. 50

3.10 Pruebas De Resistencia Al Desgaste... 51

4. Resultados y discusión. ... 52

4.1 Pruebas De Secado. .. 52
Lista De Figuras.

Figura 1. Implementos agrícolas con recubrimiento en verde. .. 2
Figura 2. Representación esquemática de las interacciones haz de electrones-muestra. 5
Figura 3. Frente de onda interactuando con 2 planos paralelos, con interferencia constructiva. .. 7
Figura 4. Geometría del indentador y la huella dejada en la prueba de dureza Vickers. 8
Figura 5. Imagen transversal de la nanoidentación realizada .. 9
Figura 6. Representación esquemática de la máquina para la prueba de abrasión de la arena seca/rueda de caucho .. 11
Figura 7. Representación esquemática del proceso GMAW .. 16
Figura 8. Representación esquemática del proceso ... 16
Figura 9. Representación esquemática del proceso (PAW) .. 17
Figura 10. Representación esquemática del proceso SMAW ... 18
Figura 11. Representación esquemática del proceso de soldadura por arco sumergido 19
Figura 12. Representación esquemática del proceso OFW .. 23
Figura 13. Representación del proceso de soldadura por láser (a) fuera del eje de movimiento del láser y (b) coaxial al movimiento del láser .. 24
Figura 15. Curva de calentamiento típica de un proceso de sinterizado 30
Figura 16. Diagrama Ellingham-Richardson con las energías libres de Gibbs para distintos sistemas metal-óxido. Las líneas punteadas muestran valores críticos de pO2, pCO2/pCO para reducción en el sistema Cr-Cr2O3 a una temperatura de 1200 °C. 34
Figura 17. Proceso de aplicación de la suspensión de polvos metálicos de FeBCCr sobre acero al boro con un 0.00175 % en peso de boro .. 44
Figura 18. Curva de calentamiento de recubrimiento hardfacing 45
Figura 19. imagen del tubo de acero 316L al interior de la mufla con la entrada y salida para los gases de atmosfera.

Figura 20. Fotografía del equipo empleado para medir la resistencia al desgaste.

Figura 21. Pérdida de peso en el proceso de secado.

Figura 22. Curvas de dilatometría de los polvos metálicos de FeBCCr.

Figura 23. Micrografías de las muestras sinterizadas en atmosfera de 100 % CO$_2$ enfriadas en (a) aire quieto y (b) agua.

Figura 24. Micrografías de las muestras sinterizadas en atmosfera de 90 % CO$_2$ – 10 % CO enfriadas en (a) aire quieto y (b) agua.

Figura 25. Micrografías de las muestras sinterizadas en atmosfera de 70 % CO$_2$ – 30 % CO enfriadas en (a) aire quieto y (b) agua.

Figura 26. Micrografías de las muestras sinterizadas en atmosfera de 50 % CO$_2$ – 50 % CO enfriadas en (a) aire quieto y (b) agua.

Figura 27. Micrografías de las muestras sinterizadas en atmosfera de 30 % CO$_2$ – 70 % CO enfriadas en (a) aire quieto y (b) agua.

Figura 28. Micrografías de las muestras sinterizadas en atmosfera de 10 % CO$_2$ – 90 % CO enfriadas en (a) aire quieto y (b) agua.

Figura 29. Micrografías de las muestras enfriadas en aire quieto sinterizadas en atmosferas de (a) 100 % CO$_2$, (b) 90 % CO$_2$ -10 % CO, (c) 70 % CO$_2$ -30 % CO, (d) 50 % CO$_2$ -50 % CO, (e) 30 % CO$_2$ -70 % CO, (f) 10 % CO$_2$ -90 % CO.

Figura 30. Micrografías de las muestras enfriadas en agua sinterizadas en atmosferas de (a) 100 % CO$_2$, (b) 90 % CO$_2$ -10 % CO, (c) 70 % CO$_2$ -30 % CO, (d) 50 % CO$_2$ -50 % CO, (e) 30 % CO$_2$ -70 % CO, (f) 10 % CO$_2$ -90 % CO.

Figura 31. Micrografía con electrones retrodispersados y EDS de cuatro zonas diferentes en la muestra sinterizada en atmosfera de 100 % CO$_2$ y enfriada en aire quieto.
Figura 32. Micrografía con electrones retrodispersados y EDS de dos zonas diferentes en la muestra sinterizada en atmósfera de 100 % CO₂ y enfriada en agua. .. 62

Figura 33. Micrografía con electrones retrodispersados y EDS de tres zonas diferentes en la muestra sinterizada en atmósfera de 90 % CO₂ + 10 % CO y enfriada en aire quieto. 62

Figura 34. Micrografía con electrones retrodispersados y EDS de tres zonas diferentes en la muestra sinterizada en atmósfera de 90 % CO₂ + 10 % CO y enfriada en agua. 63

Figura 35. Micrografía con electrones retrodispersados y EDS de tres zonas diferentes en la muestra sinterizada en atmósfera de 70 % CO₂ + 30 % CO y enfriada en aire quieto. 63

Figura 36. Micrografía con electrones retrodispersados y EDS de tres zonas diferentes en la muestra sinterizada en atmósfera de 70 % CO₂ + 30 % CO y enfriada en agua. 64

Figura 37. Micrografía con electrones retrodispersados y EDS de tres zonas diferentes en la muestra sinterizada en atmósfera de 50 % CO₂ + 50 % CO y enfriada en aire quieto. 64

Figura 38. Micrografía con electrones retrodispersados y EDS de tres zonas diferentes en la muestra sinterizada en atmósfera de 50 % CO₂ + 50 % CO y enfriada en agua. 65

Figura 39. Micrografía con electrones retrodispersados y EDS de tres zonas diferentes en la muestra sinterizada en atmósfera de 30 % CO₂ + 70 % CO y enfriada en aire quieto. 65

Figura 40. Micrografía con electrones retrodispersados y EDS de tres zonas diferentes en la muestra sinterizada en atmósfera de 30 % CO₂ + 70 % CO y enfriada en agua. 66

Figura 41. Micrografía con electrones retrodispersados y EDS de tres zonas diferentes en la muestra sinterizada en atmósfera de 10 % CO₂ + 90 % CO y enfriada en aire quieto. 66

Figura 42. Micrografía con electrones retrodispersados y EDS de tres zonas diferentes en la muestra sinterizada en atmósfera de 10 % CO₂ + 90 % CO y enfriada en agua. 67

Figura 43. Micrografías de muestras sinterizadas en atmosferas de 100 % CO₂ enfriadas en aire quieto (a) y (b) y enfriadas en agua (c) y (d). .. 68

Figura 44. Micrografías de muestras sinterizadas en atmosferas de 90 % CO₂-10 % CO enfriadas en aire quieto (a) y (b) y enfriadas en agua (c) y (d). .. 69
Figura 45. Micrografías de muestras sinterizadas en atmosferas de 70 % CO₂-30 % CO enfríadas en aire quieto (a) y (b) y en fríadas en agua (c) y (d). .. 70

Figura 46. Micrografías de muestras sinterizadas en atmosferas de 50 % CO₂-50 % CO enfríadas en aire quieto (a) y (b) y enfríadas en agua (c) y (d). .. 71

Figura 47. Micrografías de muestras sinterizadas en atmosferas de 30 % CO₂-70 % CO enfríadas en aire quieto (a) y (b) y enfríadas en agua (c) y (d). .. 72

Figura 48. Micrografías de muestras sinterizadas en atmosferas de 10 % CO₂-90 % CO enfríadas en aire quieto (a) y (b) y enfríadas en agua (c) y (d). .. 73

Figura 49. Micrografía de electrones dispersados y mapeos de la muestra sinterizada en atmosfera de 100 % CO₂ y enfríada en aire quieto. .. 74

Figura 50. Micrografía de electrones dispersados y mapeos de la muestra sinterizada en atmosfera de 100 % CO₂ y enfríada en agua. .. 75

Figura 51. Micrografía de electrones dispersados y mapeos de la muestra sinterizada en atmosfera de 90 % CO₂ - 10 % CO y enfríada en aire quieto. .. 76

Figura 52. Micrografía de electrones dispersados y mapeos de la muestra sinterizada en atmosfera de 90 % CO₂ - 10 % CO y enfríada en agua. .. 77

Figura 53. Micrografía de electrones dispersados y mapeos de la muestra sinterizada en atmosfera de 70 % CO₂ - 30 % CO y enfríada en aire quieto. .. 78

Figura 54. Micrografía de electrones dispersados y mapeos de la muestra sinterizada en atmosfera de 70 % CO₂ - 30 % CO y enfríada en agua. .. 79

Figura 55. Micrografía de electrones dispersados y mapeos de la muestra sinterizada en atmosfera de 50 % CO₂ - 50 % CO y enfríada en aire quieto. .. 80

Figura 56. Micrografía de electrones dispersados y mapeos de la muestra sinterizada en atmosfera de 50 % CO₂ - 50 % CO y enfríada en agua. .. 81

Figura 57. Micrografía de electrones dispersados y mapeos de la muestra sinterizada en atmosfera de 30 % CO₂ - 70 % CO y enfríada en aire quieto. .. 82
Figura 58. Micrografía de electrones dispersados y mapas de la muestra sinterizada en atmosfera de 30 % CO₂ - 70 % CO y enfriada en agua

Figura 59. Micrografía de electrones dispersados y mapas de la muestra sinterizada en atmósfera de 10 % CO₂ - 90 % CO y enfriada en aire quieto.

Figura 60. Micrografía de electrones dispersados y mapas de la muestra sinterizada en atmósfera de 10 % CO₂ - 90 % CO y enfriada en agua.

Figura 61. Difractogramas de los polvos metálicos de FeBCCr y las muestras sinterizadas en las diferentes atmósferas, enfriadas en aire quieto.

Figura 62. Difractogramas de los polvos metálicos de FeBCCr y las muestras sinterizadas en las diferentes atmósferas, enfriadas en agua.

Figura 63. Resultados de las pruebas de microdureza para las muestras sinterizadas en las diferentes atmósferas de sinterización y enfriadas en los distintos medios de enfriamiento.

Figura 64. Resultados de las pruebas de microdureza para las muestras sinterizadas en las diferentes atmósferas de sinterización y enfriadas en los distintos medios de enfriamiento.

Figura 65. Arena sílica empleada para las pruebas de resistencia al desgaste (a) como se recibió del proveedor, (b) después de una prueba.

Figura 66. Pérdida de peso de las muestras tras la prueba de resistencia al desgaste, en las diferentes atmósferas.

Figura 67. Imágenes de microscopía electrónica de barrido de las superficies desgastadas de las muestras sinterizadas en: (a) 100 % CO₂, (b) 90 % CO₂ – 10 % CO, (c) 70 % CO₂ – 30 % CO, (d) 50 % CO₂ – 50 % CO, (e) 30 % CO₂ – 70 % CO y (f) 10 % CO₂ – 90 % CO.
Lista De Tablas.

Tabla 1. Procedimientos para la norma ASTM G65. .. 12
Tabla 2. Procesos de aplicación de recubrimientos hardfacing, divididos por categoría. 13
Tabla 3. Aleaciones utilizadas para recubrimientos hardfacing y sus aplicaciones típicas.. 14
Tabla 4. Composiciones de los polvos metálicos comerciales de acero grado herramienta. 41
Tabla 5. Composición elemental de los polvos metálicos de FeBCCr, empleados como recubrimiento hardfacing. ... 43
Tabla 6. Composición de las suspensiones. .. 43
Tabla 7. Composición elemental del acero al boro, con un 0.00175 % en peso de boro, empleado como sustrato... 44
Tabla 8. Relación entre el tiempo de permanencia con las temperaturas de la mufla y el interior de la muestra... 47
Tabla 9. Condiciones de atmósfera y enfriamiento de las pruebas realizadas............... 48
Tabla 10. Condiciones de la prueba de resistencia al desgaste.. 52
Tabla 11. Relación Da/Dr para las distintas atmosferas de sinterización y medios de enfriamiento. ... 90
Agradecimientos.

En primer lugar, quiero agradecer a mi familia porque desde el día 1 en que decidí entrar a la maestría, me mostraron su apoyo para llegar a este momento en el que se ve concluido este capítulo de mi vida académica.

A la “bonita familia electroless”, porque desde que llegue a CIMAV en 2011 para realizar mis residencias profesionales me dieron la confianza, no solo para realizar mis actividades, sino para involucrarme en los proyectos de los demás, aquí hay que resaltar al Dr. Domínguez por provocar este ambiente de confianza, y esto se ha mantenido desde aquel entonces hasta el día de hoy, a pesar de los cambios en la alineación que ha habido a los largo de los años, quiero particularizar mi agradecimiento a Roal, “Clau” y “Menny”, porque han sido con los que más tiempo he compartido el laboratorio, y con los que más discusiones técnicas y más platicas banales he tenido a los largo de los años, a Patty que le ha tocado todo mi tiempo en la maestría, porque gracias a ella lograba aterrizar los conceptos abstractos a ejemplos claros y sencillos.

A la “Chaparra”, Angelica y Karen, porque además de “Menny” y Roal hacían que las comedas fueran mucho más divertidas y me sacaban de la rutina del laboratorio y tuvieron una gran influencia para tomar la decisión de entrar a la maestría después de 3 años de estar en CIMAV por proyectos y me dieron ese último empujoncito en la toma de la decisión final.

A mis compañeros de maestría, “Angie”, “el Javi”, “el George” y “Chaman”, antes de que les tenga que poner M.C. antes de sus nombres, porque nunca dejaron que entrara en zona de confort y tenía que esforzarme para seguir estando a su altura como estudiantes y eso me permitió aprovechar más las clases.
Reconocimientos.

Al Ing. Roal Torres Sánchez por el apoyo en la sinterización de las muestras, así como, para la preparación metalográfica de las mismas, la medición de la microdureza y para la realización de las pruebas de desgaste.

A la M.C. Karla Campos Venegas, por las horas de uso del microscopio electrónico de barrido.

Al M.C. José Trinidad Holguín Momaca, por su apoyo en la obtención de los difractogramas de rayos X.

Al M.A. Roberto Talamantes por su apoyo en la medición de la nanodureza de las muestras sinterizadas.

Al Dr. Armando García por su apoyo en la realización de las pruebas dilatométricas, de los polvos metálicos.
1. Introducción.

1.1. Justificación.

La empresa Renyson fabrica implementos agrícolas con acero al boro, con un 0.00175 % en peso de boro y actualmente aplica un recubrimiento hardfacing mediante soldadura por oxíacetileno, debido a la falta de control en procesos de soldadura por su aplicación manual, busca la implementación de un método diferente para controlar el proceso de aplicación del recubrimiento hardfacing. Con el fin de automatizar la aplicación del recubrimiento y eliminar la dependencia del factor humano en dicha aplicación. Con este desarrollo se puede mejorar el desempeño de los implementos agrícolas. Producendo piezas con mejores propiedades mecánicas que las de su competencia.

La aplicación del recubrimiento hardfacing se llevará de acuerdo a los siguientes pasos:

a) Preparación de una suspensión de polvos metálicos de FeBCCr empleados como recubrimientos hardfacing [1].
b) Estudios dilatométricos para determinar la temperatura de sinterización
c) Aplicación de la suspensión de polvos en las zonas sometidas al mayor desgaste de acuerdo a la figura 1 [1].
d) Secado de la suspensión en un horno a una temperatura entre 100 y 200 °C.
e) Sinterizado en un horno con atmósfera controlada, a la temperatura determinada en el inciso b).
f) Enfriamiento en agua para conseguir mejorar las propiedades mecánicas del sustrato.
Figura 1. Implementos agrícolas con recubrimiento en verde.

Para la sinterización en la empresa, se utilizará un horno de rodillos móviles con método de calentamiento por la combustión de gas natural o LP, lo que generará una atmosfera compuesta por: vapor de agua, dióxido de carbono, hidrógeno, monóxido de carbono, nitrógeno y pequeñas cantidades de gas sin combuster, de estos componentes los que analizaremos por su naturaleza son el monóxido y el dióxido de carbono, esto es porque el primero sirve como compuesto reductor y el segundo es gas inerte en esta aplicación particular. Esto en planta se puede modificar haciendo combustiones sub oxigenadas y sobre oxigenadas, a mayor relación aire-gas mayor cantidad de dióxido de carbono y menor cantidad de monóxido de carbono y viceversa.

Debido a la gran cantidad de porosidad interconectada o aislada del producto en verde, presentan una mayor área superficial, la cual puede reaccionar con la atmosfera creando compuestos de mayor punto de fusión (como óxidos metálicos), los cuales afectarán la temperatura de sinterización de la aleación, además de mermar las propiedades mecánicas de la aleación [3], la presencia de nitrógeno puede provocar inclusiones de moléculas de nitrógeno al interior de la muestra o la precipitación de nitruros, los cuales tienen efectos nocivos en los aceros [3].

Los procesos de hardfacing son definidos como: la aplicación de recubrimientos de aleaciones especializadas por medios de soldadura para mejorar resistencia al desgaste, corrosión, a altas temperaturas o impacto [4], los procesos comerciales actuales son complicados y costosos, estos son: soldadura por arco eléctrico, soldadura por gas, combinación de arco eléctrico y gas, esprado de polvos con llama y por láser [4], todos estos métodos utilizan calentamientos puntuales en mayor o menor medida respectivamente, buscando dejar el sustrato sin modificaciones microestructurales o reduciendo estas al mínimo posible.

Se propone utilizar un método más simple y económico para darle mayor competitividad a la empresa, el cual consiste en el depósito de una suspensión con los polvos metálicos de aleación hardfacing de FeBCCr sobre la superficie de la muestra, pasar a un horno de secado a una temperatura de entre 100 y 200 °C, debido a que la suspensión se prepara con agua y esta debe eliminarse antes
de someterse al proceso de sinterizado por el potencial de oxidación del vapor de agua a altas temperaturas, y después pasar al horno con atmósfera controlada hasta la temperatura de sinterización de los polvos metálicos de FeBCCr y mantener la temperatura por un tiempo determinado y posteriormente someterlo a temple en agua, esto con el objetivo de endurecer el acero base, un aspecto muy diferente a los métodos actuales, los cuales ya se mencionó que dejan de lado el sustrato, el recubrimiento mantendrá una microestructura de equilibrio debido a que se ha encontrado que con contenidos mayores a 12.7 % de Cr, la fase Feα es estabilizada hasta una temperatura de 1300 °C [5] y los polvos que se utilizaran tienen un contenido de cromo mayor a 14 % [1], esto provocará que el recubrimiento sea más estable en el tiempo de uso y que no existan esfuerzos internos producto de una microestructura formada por un enfriamiento fuera del equilibrio, para esto se utilizaran piezas de acero al boro, con un 0.00175 % en peso de boro, de 2.54 cm x 7.62 cm (1” x 3”).

1.2. Hipótesis.

Las variaciones de CO₂ y CO en la atmósfera de sinterización del recubrimiento hardfacing modificaran la resistencia al desgaste y las propiedades mecánicas por el efecto reductor y carburante del CO.

1.3. Objetivo General.

Encontrar la atmósfera de CO₂-CO para el proceso de sinterización del recubrimiento hardfacing, en la cual se encuentren las mejores propiedades de resistencia al desgaste y mecánicas.

1.4. Objetivos Particulares.

Preparar muestras de acero al boro, con un 0.00175 % en peso de boro, con recubrimiento hardfacing utilizando seis atmósferas de sinterización diferentes.

Caracterizar la resistencia al desgaste, micro y nano dureza del recubrimiento hardfacing, después de sinterización.
Determinar las fases microestructurales después de la sinterización, tanto las enfriadas en aire quieto como las templadas en agua.

Encontrar las condiciones ideales de temperatura y tiempo para el secado del recubrimiento hardfacing.

Encontrar las condiciones ideales de temperatura, tiempo y atmosfera para el proceso de sinterización del recubrimiento hardfacing para que proporcione las mejores propiedades de resistencia al desgaste y mecánicas.

Determinar la estructura cristalina de las fases producidas por la variación en el medio de enfriamiento, es decir, aire quieto y agua.

2. Fundamentos Teóricos.

2.1 Técnicas de Caracterización.

2.1.1. Microscopía Óptica.

Con el microscopio óptico se utiliza la luz para estudiar la microestructura; sistemas ópticos y de iluminación son los principales elementos. En aquellos materiales que son opacos a la luz visible sólo la superficie es susceptible de ser observada y la luz del microscopio se debe usar en reflexión. Las distintas regiones de la microestructura originan diferencias en la reflexión y estas producen contrastes en la imagen. Para revelar los detalles importantes de la microestructura es necesario, generalmente, preparar cuidadosamente las superficies. La superficie debe desbastarse y pulirse hasta que quede como un espejo. Esta condición se logra utilizando papeles abrasivos y polvos cada vez más finos. Se revela la superficie con un reactivo químico apropiado en un procedimiento denominado ataque. La reactividad química de los granos de un material monofásico depende de la orientación cristalográfica. Por consiguiente, en una probeta policristalina, las características del ataque variarán de un grano a otro.
A lo largo de los límites de grano se forman pequeños surcos como consecuencia del ataque. Los átomos situados a lo largo de los límites de grano son más reactivos y se disuelven con mayor velocidad que los granos. Estos surcos se hacen visibles en la observación microscópica porque reflejan la luz según un ángulo distinto al de los granos.

Para el examen de la microestructura de una aleación bifásica, se elige un reactivo que produzca diferentes texturas en cada fase de modo que puedan distinguir ambas fases con facilidad [8].

2.1.2. Microscopía Electrónica De Barrido.

El haz de electrones es emitido y acelerado por un voltaje de 0.5 a 30 kV entre el cátodo y ánodo esto produce un haz con un diámetro de 10-50 µm, esto es muy grande, para producir una imagen nítida y para reducir el tamaño del haz tiene que ser enfocado por una o dos lentes objetivas en la superficie de la muestra con un diámetro de 5 a 10 nm. Debido a que las lentes objetivas tienen una relativa gran profundidad de campo, permite tener distancias de trabajo de 5-30 mm (la distancia entre la pieza polar inferior y la superficie de la muestra, lo cual permite que las señales provenientes de la interacción del haz de electrones con la muestra sea registrados por los distintos detectores, colocados sobre y alrededor de la muestra, en la figura 2 se observa las distintas señales producidas por la interacción del haz de electrones con la muestra.

Figura 2. Representación esquemática de las interacciones haz de electrones-muestra [52].
Los electrones secundarios son producto de interacciones inelásticas del haz de electrones con la muestra, con energías en el rango de 0-50 eV, esto provoca que estos electrones lleguen de interacciones superficiales con la muestra de 5 nm para metales y 75 nm para aislantes, lo que da información topográfica de la muestra.

Los electrones retrodispersados son resultado de múltiples dispersiones de los electrones del haz con la muestra. Por definición la energía de estos está en el rango de 50 eV a la energía del haz incidente. Debido a esto las interacciones son más profundas que las de los electrones secundarios, interaccionando con los átomos de la muestra y revelando un contraste por numero atómico, a mayor numero atómico menor probabilidad del electrón de escapar lo que oscurece la señal [52].

2.1.3. Difracción De Rayos X.

Debido a que los cristales son formaciones simétricas de átomos conteniendo filas y planos de elevada densidad atómica, son capaces de actuar como retículas de difracción tridimensionales. La separación entre filas paralelas de átomos igualmente separados es de unas cuantas unidades de Å.

Cuando los rayos X de una frecuencia dada golpean a un átomo interactúan con sus electrones haciendo que vibren con la frecuencia del haz de los rayos X. Como los electrones se vuelven cargas eléctricas vibratorias, ellos retrasmiten los rayos X sin cambio en la frecuencia. Esto es los electrones de un átomo dispersan los haces de rayos X en todas direcciones. Cuando el espaciado es regular se presentan interferencias constructivas en algunos valores y destructivas en el resto, esto es cuando el ángulo de incidencia respecto a un plano atómico es el mismo que el ángulo de reflexión.

En arreglos cristalinos completos para que se presente la interferencia constructiva se deben de dar condiciones de restricción elevadas. La ley que gobierna este caso se conoce como ley de Bragg. Consideremos que cada plano de átomos en un cristal, se comporta como un espejo semitransparente, es decir, una parte de los rayos X del haz incidente son reflejados y la otra parte es reflejada por planos cada vez más lejos de la superficie. Como se muestra en la figura 3 [6].
La distancia OG es igual a la distancia interplanar, los ángulos de incidencia y reflexión son iguales, para cumplir con la condición de interferencia constructiva y las distancias FG y GH son iguales entre sí y cada una es igual a: \(d \sin \theta \), por lo tanto, la distancia FGH=2\(d \sin \theta \) y es igual a un múltiplo entero de la longitud de onda quedando la ley de Bragg como:

\[
n\lambda = 2d \sin \theta
\]

Al satisfacer esta ley los rayos X que golpean un cristal no distorsionado son definidos de forma muy aguda porque se originan de reflexiones en muchos miles de planos reticulares y con variaciones muy pequeñas en el ángulo \(\theta \), ocasionarán interferencias destructivas [6].

2.1.4 Ensayo De Microdureza Vickers

Un penetrador de diamante pequeño de geometría piramidal es forzado en la superficie de la muestra con cargas de 1 a 1000 g. la marca resultante se observa en el microscopio óptico y se miden las distancias entre vértices paralelos, con esto se calcula la dureza de acuerdo a la siguiente formula:

[8]

\[
HV = \frac{1.854 \times P}{D^2}
\]

Donde:

\(\text{HV} = \text{Dureza Vickers} \)
\[P = \text{Carga aplicada} \]

\[D = \frac{D_1 + D_2}{2} \]

En la figura 4 se presenta la geometría general del indentador y la huella que deja en el material.

Figura 4. Geometría del indentador y la huella dejada en la prueba de dureza Vickers [9].

2.1.5. Ensayos De Nanodureza.

Existen grandes diferencias tecnológicas y metodológicas entre la dureza en bulto y la nanoidentación, debido al grado extremo de miniaturización involucrado y las propiedades del material. Los equipos de medición de nanodureza fueron diseñados para medir la dureza de películas delgadas. La nanoidentación permite medir una amplia variedad de propiedades mecánicas sin tener que remover la película delgada del sustrato debido a sus huellas extremadamente pequeñas. A diferencia de las pruebas de microdureza con la nanoidentación se puede determinar el módulo elástico.

En nanoidentación la profundidad de huella menor que puede ser medida es de 100 nm. Se ha encontrado que en profundidades menores a 25 nm, se pueden sobreponer la deformación elástica del penetrador y el material a probar. Debido a sus huellas tan pequeñas alrededor de 100 nm, no son sencillas de medir por microscopios ópticos, esta desventaja es eliminada al medir las características de carga-desplazamiento.
El principio de operación básico está en tener la habilidad para producir y medir desplazamientos y cargas muy pequeñas, para esto se usan bobinas y ensambles magnéticos o piezoelétricos. Las propiedades mecánicas del material se derivan de las simples mediciones de carga, desplazamiento y tiempo.

El método más común para medir la dureza y el módulo elástico de una película delgada involucra realizar una indentación en la película, mientras se graba la carga y el desplazamiento durante el ciclo completo de carga-descarga.

Durante la prueba de nanoidentación las cantidades medidas son la carga máxima Pmax el desplazamiento en la carga máxima hmax, la rigidez inicial sin carga dada por \(S = \frac{dP}{dh} \). En la figura 5 se muestra una representación esquemática de la prueba de nanoidentación.

![Imagen transversal de la nanoidentación realizada](9).

Para calcular el módulo de elasticidad se utiliza la siguiente fórmula

\[
S = \frac{dP}{Dh} = \frac{2}{\sqrt{\pi}} E_r \sqrt{A}
\]

Donde:

S= Rigidez al contacto (N/m).
P= Carga (N).
H= Desplazamiento (m).
A= Área de contacto (m²).
Er= Modulo de elasticidad reducido (Pa).

Y el módulo de elasticidad reducido se puede calcular de acuerdo a:

$$\frac{1}{E_r} = \frac{1}{2} \left[\frac{1 - \nu_f^2}{E_f} + \frac{1 - \nu_i^2}{E_i} \right]$$

Donde:

E_r= Módulo de elasticidad de la película (Pa).

ν_f= Coeficiente de Poisson.

E_i= Módulo de elasticidad del identador (Pa).

ν_i= Coeficiente de Poisson del identador.

La dureza se calcula de acuerdo a su definición normal:

$$H = \frac{P_{\text{max}}}{A}$$

Donde:

H= Dureza.

P_{max}= Carga máxima (N).

A= Área de contacto durante la carga máxima (m²).

Para calcular el área durante la carga máxima varía dependiendo de la forma del identador y se utiliza la profundidad durante la carga máxima, para esto se usa:

$$h_c = h_0 + 0.25(h_{\text{max}} - h_0) = h_{\text{max}} - 0.75 \frac{P_{\text{max}}}{S}$$

Donde:

h_0= es encontrado por medio de una extrapolación de proporción inicial de la pendiente de la curva de descarga (m).

h_{max}= Es el desplazamiento en la carga máxima (m).

P_{max}= es la carga máxima (N) [10].
2.1.5. Resistencia Al Desgaste.

El método seleccionado para medir de forma reproducible la resistencia al desgaste se utiliza la prueba de abrasión de la arena seca/rueda de caucho, descrita en la norma ASTM G65, la cual involucra desgastar por abrasión una muestra con arena de un tamaño y composición controlada. El abrasivo se hace pasar entre la muestra y una rueda giratoria recubierta con caucho de clorobutil [11], el cual se utiliza para mantener la presión de contacto, mientras la muestra se desgasta [12]. La muestra es presionada contra la rueda giratoria con una fuerza específica, la cual está dada por un brazo de palanca, mientras que un flujo controlado de arena desgasta la superficie de la muestra. La rotación de la rueda es tal que sigue el sentido del flujo de arena. El pivote del eje de movimiento del brazo de palanca está sobre un plano que es aproximadamente tangente a la rueda de caucho y normal al diámetro horizontal a lo largo de la cual se aplica la carga en la figura 6 se muestra una representación esquemática del arreglo utilizado para la prueba. La duración de la prueba y la carga aplicada se muestran en la tabla 1 [11].

![Representación esquemática de la máquina para la prueba de abrasión de la arena seca/rueda de caucho.](image)

Figura 6. Representación esquemática de la máquina para la prueba de abrasión de la arena seca/rueda de caucho.
La severidad del desgaste abrasivo en cualquier sistema depende de: tamaño, forma y dureza de partícula abrasiva, la magnitud del esfuerzo de la partícula y la frecuencia de contacto de la partícula, son estandarizados en esta prueba para desarrollar condiciones de desgaste uniforme, denominada abrasión por rayado [11], se mide la pérdida de peso, registrando el peso de las muestras antes y después de la prueba y se convierten a perdida de volumen de acuerdo a:

\[
\text{Pérdida de volumen (mm}^3) = \frac{\text{Pérdida de peso (g)}}{\text{Densidad (g/cm}^3)} \times 1000(\text{mm}^3/\text{cm}^3)
\]

2.2 Hardfacing

Hardfacing es un proceso de soldadura de capas protectoras, en forma de recubrimiento sobre un material base, comúnmente utilizado en la industria para aumentar el tiempo de servicio de componentes y/o herramientas que son sometidas a desgaste abrasivo.

Hardfacing debe de ser un compósito con un material base seleccionado con alta dureza, una microestructura gruesa, resistencia y de costo bajo. El recubrimiento hardfacing, es aplicado en la superficie de materiales que son sometidos a deslizamiento entre metales con elevados esfuerzos de contacto, abrasión, erosión o picaduras y corrosión.

El desgaste es el factor predominante que afecta la vida útil de las partes de maquinaria y de implementos agrícolas. Todas las partes de equipo tienen distintas etapas de fallo, no fallan en una sola etapa de desgaste, como un impacto repentino, pero fallan por combinaciones de etapas tales como: adhesión, erosión, abrasión, corrosión, oxidación, etc.

<table>
<thead>
<tr>
<th>Procedimiento</th>
<th>Fuerza aplicada contra la muestra (N)</th>
<th>Giros de la rueda</th>
<th>Abrasión lineal (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>130</td>
<td>6000</td>
<td>4309</td>
</tr>
<tr>
<td>B</td>
<td>130</td>
<td>2000</td>
<td>1436</td>
</tr>
<tr>
<td>C</td>
<td>130</td>
<td>100</td>
<td>71.8</td>
</tr>
<tr>
<td>D</td>
<td>45</td>
<td>6000</td>
<td>4309</td>
</tr>
<tr>
<td>E</td>
<td>130</td>
<td>100</td>
<td>718</td>
</tr>
</tbody>
</table>

Referencia [11]
La resistencia al desgaste de los materiales puede ser mejorada mediante tratamientos térmicos o con la aplicación de un recubrimiento duro superficial (hardfacing) en un material de sustrato. La microestructura juega un papel muy importante en la resistencia al desgaste además de la dureza del recubrimiento. Fases duras y gruesas tienen una mejor resistencia al desgaste abrasivo.

Aleaciones Fe-Cr-C son de uso común en la industria debido a su resistencia a la abrasión superior. La resistencia a la abrasión depende del tipo de aleación hardfacing, morfología, el patrón de distribución de los carburos y la estructura de la matriz. Aleaciones base hierro con altos contenidos de cromo son usados de forma recurrente debido a su dureza superior y excelente resistencia a la abrasión, por la formación de carburos de cromo [13], estos aceros actualmente son sinterizados en hornos continuos a una temperatura máxima de 1150 °C [14]. En la tabla 2 se muestran los métodos más comunes para la aplicación de recubrimientos hardfacings sobre sustratos metálicos.

<p>| Tabla 2. Procesos de aplicación de recubrimientos hardfacing, divididos por categoría. |
|---------------------------------|--|</p>
<table>
<thead>
<tr>
<th>Categoría</th>
<th>Proceso</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soldadura Por Arco</td>
<td>Soldadura Por Arco Con Coraza De Fundente</td>
</tr>
<tr>
<td></td>
<td>Soldadura Por Arco Metal Gas</td>
</tr>
<tr>
<td></td>
<td>Soldadura Por Arco Con Electrodo De Tungsteno Y Gas Inerte</td>
</tr>
<tr>
<td></td>
<td>Soldadura Por Arco Con Plasma</td>
</tr>
<tr>
<td></td>
<td>Soldadura Por Arco Con Metal Recubierto De Fundente</td>
</tr>
<tr>
<td>Soldadura Con Antorcha</td>
<td>Soldadura Por Arco Sumergido</td>
</tr>
<tr>
<td></td>
<td>Soldadura Por Oxiacetileno.</td>
</tr>
<tr>
<td>Otros Métodos De Soldadura</td>
<td>Soldadura Eléctrica Asociada Con Escoria Fundida</td>
</tr>
<tr>
<td></td>
<td>Soldadura Por Láser</td>
</tr>
<tr>
<td></td>
<td>Procesamiento Por Fricción-Agitación</td>
</tr>
<tr>
<td></td>
<td>Soldadura Por Haz De Electrones</td>
</tr>
<tr>
<td></td>
<td>Soldadura En Horno</td>
</tr>
</tbody>
</table>

En la tabla 3 se presentan las aleaciones metálicas más comúnmente utilizadas para recubrimientos hardfacing, así como las aplicaciones típicas de estas [15] [16].
Tabla 3. Aleaciones utilizadas para recubrimientos hardfacing y sus aplicaciones típicas.

<table>
<thead>
<tr>
<th>Aleación Metálica</th>
<th>Propósito</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aleaciones Base Cobalto</td>
<td>Resistencia Al Desgaste Y Corrosión</td>
</tr>
<tr>
<td>Aleaciones Base Cobre</td>
<td>Reparación De Partes De Maquinaria Desgastadas</td>
</tr>
<tr>
<td>Aleaciones Hierro-Cromo</td>
<td>Abrasión De Esfuerzo Alto</td>
</tr>
<tr>
<td>Aceros Al Manganese</td>
<td>Aplicaciones De Desgaste</td>
</tr>
<tr>
<td>Aleaciones Base Níquel</td>
<td>Resistencia Al Desgaste Metal Con Metal</td>
</tr>
<tr>
<td>Aceros Grado Herramienta</td>
<td>Herramientas Y Aplicaciones De Desgaste</td>
</tr>
<tr>
<td>Carburo de tungsteno</td>
<td>Abrasión de esfuerzo alto</td>
</tr>
</tbody>
</table>

Referencia [15]

2.2.1. Soldadura Por Arco Eléctrico (Arc Welding).

2.2.1.1. Soldadura Por Arco Con Coraza De Fundente (Flux Cored Arc Welding).

En este proceso se utiliza un electrodo en forma de cable con una coraza de fundente, el cual es constantemente alimentado atreves del ensamblaje para soldadura, por ahí mismo se hace pasar la corriente. La corriente de soldadura funde el electrodo y el metal base, cuando el fundente se vaporiza forma una nube gaseosa que protege la superficie soldada, algo del fundente viaja y cae en la zona soldada en forma líquida y ayuda a recolectar impurezas y llevarlas a la superficie en forma de escoria que cubre la zona soldada mientras se enfriá.

A pesar de que la escoria debe de ser retirada al enfriarse, tiene las ventajas de su alta calidad, versatilidad y su mayor velocidad de soldadura.

Se denomina un proceso semiautomático, debido a que la alimentación del cable es automática pero el operario tiene que mover la pistola de soldadura a las zonas a soldar. Es elegido por los fabricantes debido a su relación costo/eficiencia, produce soldaduras de alta calidad, por su versatilidad y flexibilidad. Además de la facilidad para obtener equipos y materiales en diversos establecimientos [22].
2.2.1.2. Soldadura Por Arco Metal Gas (Gas Metal Arc Welding).

Es un método muy versátil y ampliamente utilizado. Debido a su facilidad de uso, poder aplicarlo en todas las posiciones, tamaño compacto y relativamente económicos precios de electricidad han hecho de GMAW un método atractivo para depósito de varios recubrimientos resistentes al desgaste. La tasa de depósito es de 2 kg/h- 6.7 kg/h.

El proceso GMAW está limitado a aleaciones que se encuentren disponibles en cables, entre ellas: acero inoxidable, aleaciones de Ni, recubrimientos de carburo de cromo y Ni-WC. Los recubrimientos de carburo de cromo son depositados en bajos volúmenes o en piezas pequeñas. Sus aplicaciones en las industrias energéticas, mineras y de construcción en protección de equipo y mejorando los ciclos de vida en servicio.

Retos típicos

Disolución de carburos de tungsteno y baja eficiencia de transferencia de carburos.

Parámetros típicos del proceso

La soldadura se realiza generalmente de forma manual. Puede ser automatizadas para grandes superficies, sin embargo, las longitudes de los cables en los procesos automáticos deben de ser lo menor posible, para evitar problemas de alimentación, en la figura 7 se muestra la representación esquemática del proceso GMAW. Los parámetros del proceso varían de la siguiente forma:

Diámetro del cable: 0.9 a 3.2 mm
Voltaje: 22-38 V
Corriente: 160 a 520 A
Alimentación: 300-800 mm/min
2.2.1.3. Soldadura Por Arco Con Electrodo De Tungsteno Y Gas Inerte (Gas Tungsten Arc Welding).

Es un proceso llamado GTAW por sus siglas en inglés fue desarrollado a finales de la década de 1930 cuando se volvió necesario un método para soldar magnesio y es utilizado en la fabricación de fuselajes de aviones con componentes de aluminio y magnesio.

La temperatura necesaria para fundir los materiales para llevar a cabo la soldadura es lograda por medio de un arco eléctrico entre un electrodo de una aleación de tungsteno y el material base, la temperatura de la zona fundida puede alcanzar hasta 2500 °C, se agrega un flujo de gas inerte, el cual protege el metal de una contaminación producto de la atmósfera, generalmente se usa: argón, helio o una mezcla de ambos. En la figura 8 se presenta una representación esquemática del proceso.

Figura 7. Representación esquemática del proceso GMAW [16].

Figura 8. Representación esquemática del proceso [23].
Ventajas y limitaciones

- Produce soldaduras de alta calidad y baja distorsión.
- Libre de salpicaduras asociadas a otros procesos.
- Se puede usar con o sin cable de relleno.
- Se pueden utilizar varias fuentes de energía.
- Pueden soldar casi todos los metales, incluidos metales disimiles.
- Se puede controlar el calor de la soldadura.
- Tiene menores tasas de producción que las soldaduras por arco con electrodos consumibles, además es más caro para secciones gruesas.
- Requiere una mayor habilidad por parte del operario que en los procesos GMAW y SMAW.
- Dificultad de controlar la protección con la atmósfera en lugares con corrientes de aire [23].

2.2.1.4. Soldadura Por Arco Con Plasma (Plasma Arc Welding).

El proceso puede ser definido como un proceso de soldadura por arco con una protección de gas en el que la coalescencia de los metales se logra por la transferencia de calor producida por un arco eléctrico entre un electrodo de tungsteno y el metal base, el arco es restringido por una boquilla de aleación de cobre, con lo cual se consigue una columna de arco altamente colimada. El plasma es formado a través de la ionización de una porción del plasma del gas. Puede ser operado con o sin cable de relleno. En la figura 9 se presenta la representación esquemática del proceso.

Figura 9. Representación esquemática del proceso (PAW) [23].

Se utiliza en dos distintos modos de operación, el modo de fusión, en el cual se genera una zona fundida similar a la producida en el proceso GTAW, en donde una porción del metal base es
fundido y el segundo modo conocido como el modo de hueco concéntrico, en el cual el arco penetra al metal base, formando un hueco concéntrico a lo largo de todo el espesor del metal base. El metal fundido fluye alrededor del arco y vuelve a solidificarse detrás del hueco mientras avanza el proceso.

Las corrientes pueden ser de 0.1 a 15 A en modo microplasma, en modo plasma de media corriente de 15 a 100 A y en modo de hueco concéntrico es mayor 100 A [23].

2.2.1.5. Soldadura De Arco Con Coraza Metálica. (Shielded Metal Arc Welding).

Es un proceso de soldadura manual en el cual se forma un arco eléctrico entre un electrodo consumible cubierto de fundente y un material base, utiliza la descomposición del fundente para generar un escudo de gas y ademan provee los elementos fundidos que protegen la zona de soldadura.

El arco es iniciado por un toque momentáneo del electrodo en el metal base. Esto provoca que tanto el electrodo como el metal base se fundan y el electrodo fundido fluye a través del arco hacia el metal base, el cual también comienza a fundirse y ahí se convierte en el depósito de soldadura, el cual es cubierto por escoria producto del fundente y esto lo protege del medio. Ver figura 10.

![Figura 10. Representación esquemática del proceso SMAW [23].](image)

Ventajas y limitaciones

- Es el método más usado de soldadura
- El más sencillo en términos de equipos requeridos
- El operador necesita una mayor habilidad para realizarlo
- Puede ser utilizado en cualquier posición desde horizontal hasta vertical.
Los materiales consumibles están disponibles en diversos proveedores [23].

2.2.2. Soldadura Por Antorcha.

2.2.2.1. Soldadura Por Arco Sumergido (Submerged Arc Welding).

Es un proceso común de manufactura de recubrimientos hardfacing debido a su productividad y tasa de depósito, conocido como SAW, por sus siglas en inglés. Los polvos de alta aleación con altos contenidos de: Cr, C, Mn y Mo, son colocados frente a la cabeza de soldadura. La antorcha de soldadura y el cabezal con el fundente se mueven sobre los polvos con un cable de acero de baja aleación, mientras hace oscilaciones cortas, esto para hacer más ancho la zona soldada, el fundente convencional es utilizado para proteger la zona de soldadura del ambiente. En la figura 11, se presenta una imagen representativa del proceso. La facilidad de cambiar la composición de la aleación de polvos le da una ventaja a este proceso. La tasa de depósito puede ser de hasta: 22.68 kg/h.

![Figura 11. Representación esquemática del proceso de soldadura por arco sumergido [16].](image)

Recubrimientos de carburos de cromo son producidos usando la técnica SAW en láminas grandes, que después son cortadas con plasma y soldadas para lograr la forma final, otra ventaja es que después de la puesta en marcha se requiere una habilidad menor por parte del operador que la requerida para procesos manuales, el proceso es altamente automático lo que aumenta la productividad.

Retos típicos
Los recubrimientos de carburos de cromo comúnmente tienen fisuras como resultado de la contracción de la zona líquida durante el enfriamiento, llamadas fisuras de relajamiento y son aceptables siempre y cuando el ancho no supere valores determinados y no continúe dentro del sustrato, en la práctica usualmente son interpretadas como falta de carburos en la zona fundida de la soldadura. Se presenta el reto de la disolución asociada a su alto calor aplicado en la zona, lo que provoca que recubrimientos hipereutecticos se comporten como hipoeutecticos y la disminución de carburos que provoca una disminución en la resistencia al desgaste, la distorsión es otro problema en este proceso, se ha intentado superar utilizando sujeciones y una cuidadosa observación del operador para asegurar la distancia entre el cabezal y la placa.

Desventajas

Solo puede ser aplicado en una posición plana

El gran equipamiento empleado hace que no se pueda operar de forma manual y que reparaciones en campo de partes desgastadas no puede hacerse.

No se consiguen microestructuras uniformes, con variaciones mayores que las presentadas por hierros blancos de composiciones comparables. Es creído en la industria que el rendimiento al desgaste varía entre capas y las especificaciones toman en cuenta esto.

Parámetros típicos del proceso

Voltaje: 30-40 V.

Corriente: 500-700 A.

Se pueden lograr espesores de 4.76 mm a 9.53 mm, para mayores espesores se pueden hacer múltiples pasos [16].

2.2.2.2. Soldadura Por Oxiacetileno. (Oxy/Fuel Gas Welding).

A pesar de ser uno de los métodos más viejos para producir recubrimientos hardfacing sigue siendo muy popular debido a la simplicidad de su operación. El equipo es relativamente barato, el cual incluye una antorcha, cilindros de oxígeno y acetileno, dos reguladores de presión y mangueras para conexión de gas. El oxígeno y acetileno a presiones determinadas son llevados a través de las
mangueras hasta la antorcha en donde se mezclan y crean una flama en la punta. Se alcanzan temperaturas de hasta 3500 °C. La flama es utilizada para calentar localmente el metal base, pero sin fundirlo. En los aceros adquieren una apariencia esmaltada (también llamado sudor) que es un indicativo que la temperatura es la adecuada. Entonces un material de hardfacing es introducido a la flama, la cual viaja hacia la superficie y se forma un recubrimiento. Típicamente es un proceso manual y no hay registros de que se haya logrado automatizar.

Se utiliza principalmente para la mayoría de materiales ferrosos y no ferrosos, siendo los más comunes aceros y hierros, debido a su amplio rango de aplicaciones. La preparación superficial es crítica para asegurar que haya un buen anclaje entre el sustrato y el recubrimiento, esta preparación incluye para metales no reactivos desbaste por chorro de arena o incluso solo engrasado puede ser suficiente. En materiales que se oxidan fácilmente a altas temperaturas o que el recubrimiento no moja al metal base, tienen que ser recubiertos con una película fina de un fundente protector o de un metal de aleación antes del depósito. En la mayoría de los aceros una película delgada de un metal fundente es espreada térmicamente en la superficie, la cual crea la compatibilidad metalúrgica con el material de hardfacing. Durante el depósito el fundente se funde y mezcla con el recubrimiento hardfacing formando un fuerte anclaje con el metal base.

Alambres de diámetros nanométricos y longitudes en el orden de micras, así como cuerdas flexibles son la forma general de consumibles utilizados en la soldadura por oxíacetileno, se prefieren las cuerdas por su capacidad de una alimentación continua. Las cuerdas flexibles consisten en una aleación metálica delgada en forma de alambre y con una cubierta de polvos con un agente polimérico como aglutinante y el cable es extruido hasta el diámetro deseado.

Los beneficios de usar flama para hardfacing son: cuando se usan bajas temperaturas de proceso, sin dilución del metal base, flexibilidad de hardfacing alrededor de geometrías complejas y bajo costo, equipo portable es requerido.

Es utilizado para depositar materiales basados en WC, recubrimientos de carburo de cromo, y aleaciones tipo Stellite en brocas, es utilizado en cuchillas para la industria petrolera, quebradoras
de quijada, cuchillas mezcladoras, tornillos y transportadoras en industrias química y de alimentos y otras herramientas utilizadas en la construcción de caminos, excavación y aplicaciones de dragado.

El proceso es económico con bajas habilidades manuales, la operación manual puede ser en un taller dedicado o in situ y la tasa de depósito no es crítica.

Se necesita un precalentamiento de hasta 350 °C, el cual puede generar una deformación. Al utilizar una fuente menor de calor baja la tasa de eficiencia del proceso y tienen una menor eficiencia energética, por la mayor cantidad de metal fundido es difícil de automatizar el proceso. En operación manual el control del espesor del recubrimiento es complicado, llevando a un excesivo uso de material y se deben de agregar pasos de lijado, al usar una flama tan grande no se pueden utilizar los cordones más delgados, lo que dificulta las reparaciones en algunos casos. No es recomendable para secciones gruesas.

Los parámetros más importantes a controlar son:

La punta de la antorcha, ajustar la presión de cada gas y seleccionar el tipo de cuerda.

La flama de oxíacetileno puede ser neutral, reductora u oxidante dependiendo de las proporciones de oxígeno y acetileno. Una flama levemente reductora es preferida para aplicar recubrimientos hardfacing para prevenir la oxidación, esto se logra agregando más acetileno de la relación estequiométria.

La tasa de depósito es de 0.99-2.72 kg/h, en la figura 12 se muestra la representación esquemática del proceso de soldadura por oxíacetileno [16].
2.2.3. Otros Procesos De Soldadura

2.2.3.1. Soldadura Eléctrica Asociada Con Escoria Fundida (Electroslag welding).

Es un proceso de soldadura vertical que produce coalescencia, por medio de escoria fundida, la cual funde el metal de relleno, así como la superficie del material base, la zona de soldadura está protegida por la escoria fundida, esta se mueve a lo largo de toda la sección conforme avanza el proceso de soldadura. La escoria se mantiene fundida por su resistencia eléctrica al paso de la corriente entre el electrodo y el metal base. El arco eléctrico ocurre solo al inicio del proceso, una vez que se logra la fundición se elimina el arco. Durante el proceso el fundente es agregado, para mantener la cobertura de la escoria sobre la zona fundida.

Se han reportado temperaturas en aceros de bajo carbono de hasta 1925 °C en la zona fundida y de 1650 °C en la superficial. Las mayores variables del proceso son la corriente y voltaje, la primera es responsable de la tasa de fundición del electrodo, mientras que el voltaje es asociado a la penetración en el material base, así como el espesor de la zona fundida. Ambas variables son sensibles a las propiedades del fundente, tales como: resistividad y fluidez [23].
2.2.3.2. Soldadura Por Láser (Laser Beam Welding).

Se utiliza un láser como fuente de calor para depositar un material sobre un sustrato. El láser es controlado por CNC. Las aplicaciones industriales de hardfacing son dominadas por metodologías de inyección de polvos. En estos métodos, el polvo es arrastrado por un gas inerte a una zona fundida a través de una boquilla que puede ser fuera del eje de movimiento o de forma coaxial al movimiento del láser, esto se presenta en la figura 13 (a) y (b) respectivamente.

![Figura 13. Representación del proceso de soldadura por láser (a) fuera del eje de movimiento del láser y (b) coaxial al movimiento del láser [16].](image)

En ambos casos el polvo es inyectado es una zona fundida creada por las interacciones, entre el láser, sustrato y los polvos que llegan a la superficie. La tasa de depósito por láser determinada por el poder del láser, los de baja potencia usados en laboratorio (500W-3kW) y tienen una tasa de 0.01 g/min hasta 40 g/min. Los láseres de alto poder utilizados en producción (3-10kW) alcanzan una tasa de 150 g/min.

Este método crea una densidad de alta energía, que da como resultado grandes gradientes térmicos entre la zona soldada, lo que limita la disolución, baja zona afectada por el calor, mínima distorsión.

El sistema más utilizado es el de carburos de tungsteno en una matriz de NiCrBSi. El cual se utiliza en las industrias petroleras y de gas.
Debido al proceso se limita la disolución del material base y su rápida solidificación ayuda para prevenir la perdida de la resistencia al desgaste y a la corrosión por un calentamiento excesivo, el sustrato no se ve afectado por la temperatura, es decir, no se modifican sus propiedades ni se distorsiona su forma geométrica.

La eficiencia en el uso del polvo es un reto, puesto que la geometría de la boquilla, la forma de la zona fundida, velocidad y alimentación de polvo contribuyen con la fracción de polvo que realmente es utilizado para el recubrimiento. La limpieza del sustrato tiene mayor importancia que en otros métodos de soldadura, requiere un desbaste mecánico con una carda, seguido de limpieza con acetona para eliminar exceso de grasa, restos del metal a menudo crea defectos en la línea de fusión en forma de óxidos y estos son potenciales concentradores de esfuerzos [16].

2.2.3.3. Procesamiento por fricción-agitación (Friction stir processing).

Es una técnica relativamente nueva basada en la técnica de soldadura por fricción, en esta una herramienta no consumible con cierta geometría transversal a la línea de soldadura: la alta velocidad de rotación de la herramienta junto a la fuerza de fricción entre la pieza de trabajo y el hombro (pieza en movimiento) provocan una unión por calentamiento por fricción, provocando un ablandamiento y una deformación plástica severa. FSP involucra los mismos principios, pero en lugar de unir dos piezas es utilizado para la modificación micro estructural, homogenización de polvos metálicos y partes de fundición y fabricación de capas de materiales compuestos de matriz metálica sobre diferentes sustratos metálicos. La acción de agitación de la herramienta rotatoria mezcla la zona de material en agitación que ha sido utilizada para fabricar compósitos de matriz metálica, para esto primero se hace una ranura y una serie de agujeros son maquinados en la superficie de la matriz metálica y el material de refuerzo es colocado en la ranura y agujeros, entonces por uno o varios pasos de FSP se realizan a lo largo de la ranura. Un flujo de material inducido por los defectos, mezcla los dos materiales y se logra una capa de compósito, esto se muestra en la figura 14, debe de hacerse notar que no se funde el material en bulto, por lo que el deterioro de las propiedades mecánicas o
disolución del material de refuerzo, los cuales son problemas típicos de la técnica de soldadura por fusión son limitadas.

Se ha utilizado en compuestos de matriz metálica (aluminio, magnesio, cobre y acero). Se utiliza en aleaciones bajos puntos de fusión, ya que la herramienta se vuelve un problema a mayor punto de fusión, también se ha utilizado para homogenizar compuestos producidos por otras técnicas.

Parámetros típicos del proceso

Geometría de la pieza, velocidad rotación, velocidad de avance y numero de pasos [16].

2.2.3.4 Soldadura Por Haz De Electrones (Electron Beam Welding).

Es una técnica nueva utilizada para mejorar las propiedades de los materiales y se realizan investigaciones para la fabricación de compósitos en superficies con cerámicos o aleaciones amorfas, con recubrimientos que poseen excelentes resistencias al desgaste, corrosión y calor. Los tratamientos superficiales actuales como: Depósito de vapor químico, anclaje por láser y erosión catódica (sputtering), pueden producir fractura o separación entre la capa y el sustrato, bajo altas temperaturas, impactos o ambientes corrosivos. Mientras que el método de soldadura por haz de electrones rara vez presenta estos problemas y alcanza fuertes interfases entre el recubrimiento y el material base, además se pueden realizar calentamientos y enfriamientos rápidos, durante la fusión y solidificación respectivamente.
Cuando un haz de electrones de alta energía (algunos MeV) se hace incidir sobre la superficie del sustrato, los electrones que tienen una alta energía cinética colisionan con los electrones del sustrato y transfieren su energía a estos en forma de energía de excitación y cinética de electrones secundarios y estos la transforman en energía calorífica que es transferida a la red cristalina por colisiones electron-phonon, por lo que los metales y cerámicos pueden ser fácilmente fundidos.

Mientras el haz de electrones irradia la superficie del sustrato los polvos de aleaciones metálicas o cerámicas son depositados uniformemente sobre el sustrato, tanto los polvos como el sustrato se encuentran en fase fundida y en la zona fundida precipitan carburos, boruros y nitruros durante la solidificación [18].

2.2.3.5 Soldadura En Horno (Furnace Braze)

De forma general podemos decir que la soldadura en horno es un proceso de unión de partes que depende de: la soldadura, flujo y solidificación de un metal de relleno, para formar sellos sin fuga, un fuerte enlace estructural o ambos entre materiales, este proceso es único debido a que lo que se funde es solamente el material de relleno quedando en estado sólido los materiales a unir.

Es un proceso comercial bien establecido, ya que permite unir la mayoría de los metales y cerámicos, es un proceso versátil que puede utilizar técnicas manuales o automatizadas. Se pueden hacer ensamblajes del mismo material o de materiales diferentes. Usualmente se asocia a ahorro de costos de producción.

Se refiere a una serie de procesos de unión que produce coalescencia de materiales al calentarlos a una temperatura a la cual el material de relleno alcanza una temperatura por encima de la temperatura de liquidus y por debajo de la temperatura de solidus del material base. El material de relleno es distribuido entre las capas de materiales a unir por la acción de la capilaridad [20].

Para este proceso se prefieren composiciones eutéticas, debido a la reducción en la temperatura y a que favorecen la homogeneidad en la fase líquida, lo cual mejora la capacidad de fluir por parte del material de relleno hacia toda la zona a unir [21].
2.3. Metalurgia De Polvos.

La metalurgia de polvos puede ser mejor definida comparándola con la metalurgia de fusión, en esta un metal o aleación es fundida y vaciada en un molde. El molde puede tener la forma deseada para el producto final, o puede ser en forma de lingote, la cual se llevará a su forma final por medio de procesos de conformado tales como: laminado, forjado, extrusión, maquinado, etc. En la metalurgia de polvos, polvos metálicos por ejemplo metales finamente divididos son el material de inicio, los polvos son consolidados en productos de una forma determinada, por lo que los pasos básicos para la metalurgia de polvos son: producción de polvos metálicos y consolidación de polvos metálicos.

La secuencia más común de consolidación de polvos es: prensado de los polvos en un dado o molde con la forma deseada, y después de esto un proceso de sinterizado, lo que significa calentar los polvos a una temperatura por debajo de la temperatura de fusión del metal o aleación, para brindarle las propiedades físicas, mecánicas y químicas deseadas, esto puede ser a su forma final o a un lingote que será posteriormente formado.

Los polvos metálicos pueden ser usados también en pinturas, barnices o tintas de impresión, como reactivos en la industria química, explosivos, como aditivos en alimentos, para cortar y limpiar superficies, como recubrimientos metálicos (electrodos para soldadura), ninguno de estos usos es parte de la metalurgia de polvos.

La fabricación de piezas estructurales de polvos metálicos no es la única ni más vieja aplicación, debido a su proceso de fabricación pueden ser utilizados metales de alto punto de fusión para aplicaciones donde una alta resistencia al desgaste es requerida.

Cuando los polvos metálicos son prensados a temperatura ambiente no tienen las propiedades mecánicas para aplicaciones convencionales, para que sean útiles deben de ser sinterizados, muchos productos de polvos son sinterizados en hornos continuos pasando por zonas de precalentado,
sinterizado y enfriamiento. En donde una atmósfera protectora, o incluso vacío es empleado en estos hornos para evitar reacciones no deseadas.

La secuencia de primero compactar y posteriormente sinterizar, no siempre es empleada para la consolidación de polvos metálicos, en ocasiones polvos sin comprimir, agregados, o vaciado en un molde de una suspensión de polvos en algún medio acuoso, son ocasionalmente empleados, para dar forma antes de sinterizar.

Desde la prehistoria y hasta los primeros años del siglo pasado la metalurgia de polvos fue una tecnología para producir piezas forjadas de metales de alto punto de fusión que no podían ser fundidos. Comenzó con hierro en la forma de esponja producido por la reducción de óxido de hierro con el carbón en hornos de carbón. Esta esponja después era molida o quebrada hasta obtener las partículas de polvo, lavadas y elegidas a mano eliminando de esta forma la ganga y escoria y entonces los polvos de hierro limpios eran sinterizados con o sin comprimirlos y después forjados.

En 1910 se desarrolló y en 1913 se patento el método para producir cables de tungsteno. el uso de la metalurgia de polvos fue de gran utilidad cuando se comenzaron a producir piezas de metales refractarios, tales como: molibdeno, tántalo, niobio y de algunos metales reactivos como titanio o zirconio, esto hasta 1940 cuando surgieron métodos para fundir los metales sin importar su punto de fusión (arco en vacío o fusión por haz de electrones).

La primera parte estructural desarrollada por la ruta de metalurgia de polvos fueron los engranes de las bombas de aceite, las cuales sustituyeron a los engranes fabricados a partir de lingotes de hierro.

Níquel y cobre son elementos de aleación que se añaden a los polvos de acero para mejorar sus propiedades mecánicas

Piezas de hierro pueden ser infiltradas con metales de menor punto de fusión, los cuales se fundirán y rellenarán los poros incrementando su densidad.
Esta establecido que cuando las partículas de polvo se encuentran en contacto entre ellas y son sujetas a calentamiento crecen por la acción de las fuerzas de capilaridad y de tensión superficial, por lo que el proceso de prensado no es indispensable para que se dé la sinterización de las partes.

La aplicación tecnológica más común de la metalurgia de polvos sin etapa de prensado es cuando se requieren piezas con porosidades en el rango de 40 a 90% [2].

2.3.1. Sinterización.

La sinterización es calentar los polvos de un material determinado a una temperatura por debajo de la temperatura de fusión del material, para brindarle las propiedades físicas, mecánicas y químicas deseadas, en el caso de la metalurgia de polvos se utilizan tres tipos de hornos a escala industrial para llevar a cabo este proceso, en todos se tiene la posibilidad de tener atmósfera controlada [2] en la figura 15 se observa una curva de calentamiento típica de un proceso de sinterizado.

![Curva de calentamiento típica de un proceso de sinterizado](image)

Figura 15. Curva de calentamiento típica de un proceso de sinterizado [19].

2.3.1.1. Hornos Continuos.

Los hornos continuos industriales son divididos en tres zonas: Zona de precalentamiento, también llamada zona de quemado, zona de calentamiento y zona de enfriamiento.

La zona de precalentamiento debe de ser lo suficientemente larga para poder eliminar los restos de lubricante utilizados durante la compactación, se alcanza una temperatura máxima de
430 °C, la tasa de remoción de lubricante debe de ser baja para no producir fracturas, por evaporación violenta.

En la zona de calentamiento se debe de controlar de forma estricta la temperatura a lo largo de toda la zona, ya que la temperatura tiene una gran importancia en los cambios dimensionales durante la sinterización. En muchas atmosferas protectoras se utiliza monóxido de carbono esto se debe tener en cuenta al momento de seleccionar un refractario adecuado puesto que en temperaturas entre 427 y 649 °C, el monóxido de carbono se descompone formando carbón y dióxido de carbono. Se alcanzan temperaturas de hasta 1320 °C.

La zona de enfriamiento en hornos con atmosfera protectora tiene que ser lo suficientemente larga para evitar la oxidación de las piezas terminadas, normalmente se divide en dos una zona aislada y otra zona con enfriamiento con agua en chaquetas exteriores.

2.3.1.2. Hornos Por Lote.

Los hornos por lote son utilizados cuando la cantidad de piezas a sinterizar es reducida, también son empleados para sinterizar piezas de materiales refractarios, tienen un mejor control de atmosfera.

2.3.1.3. Hornos De Sinterización En Vacío.

Son similares a los por lotes, originalmente se diseñaron para metales reactivos, tales como: Ta, Nb, Ti, Zr y sus aleaciones. El material a sinterizar se coloca en bandejas de grafito y es calentado por un receptor de calentamiento de grafito por medio de una corriente de alta frecuencia.

Se ha desarrollado hornos continuos en vacío, con los cuales utilizando tablas rotatorias en las cuales se puede hacer el precalentamiento, calentamiento y enfriado en vacío.

La principal razón para utilizar hornos de vacío es por la energía requerida para proveer la atmosfera protectora es muy alta y puede ser tanto como la mitad de los requerimientos energéticos para sinterizar. Por lo tanto, los hornos de vacío pueden reducir substancialmente los requerimientos energéticos del proceso de sinterización.
2.3.1.4. Propósito De Las Atmosferas De Sinterización.

El propósito primario de la atmósfera de sinterización es controlar las reacciones químicas entre el cuerpo en verde y sus alrededores. Un propósito secundario es el eliminar los gases de desecho producto de la descomposición de los lubricantes empleados durante el proceso de sinterizado. La importancia del control de las reacciones químicas se vuelve evidente cuando se toma en cuenta que el material en verde posee poros interconectados, lo que quiere decir que no solo la superficie reaccionara, sino, que los gases pueden penetrar al interior del material en verde. Las reacciones más importantes a controlar son:

- Reducción de los óxidos en la superficie de las partículas de polvo en el material en verde y con ello producir una mayor área de contacto metal-metal y prevenir cualquier oxidación posterior en las áreas de calentamiento y enfriamiento del horno.
- Carburización y descarburación en el material en verde, en polvos de hierro y acero.

2.3.1.5. Descripción De Las Atmosferas De Sinterización.

Las atmosferas de sinterización comerciales son:

- Hidrógeno.
- Amonio disociado.
- Gases de hidrocarburos parcialmente combustionados.
- Nitrógeno.

2.3.1.5.1. Hidrógeno.

El hidrógeno como atmósfera de sinterización es relativamente costoso, sobre todo en pequeñas cantidades. Cuando se utilice el hidrógeno como atmósfera se debe mantener en mente: su tendencia a formar mezclas explosivas con aire, su baja densidad (7 % de la densidad del aire), su alta conductividad térmica (siete veces mayor que la del aire). Dependiendo de la ruta de manufactura el hidrógeno puede contener impurezas como: oxígeno y vapor de agua.
2.3.1.5.2. Amonio Disociado.

El amonio disociado contiene un 75 %vol de H₂ y un 25 %vol de N₂ y es producida por la gasificación de amonio líquido por la reacción:

\[2NH_3 = N_2 + 3H_2\]

Esta reacción se da a 750 °C y contiene muy poco vapor de agua.

2.3.1.5.3. Gases De Hidrocarburos Parcialmente Combustionados.

Metano, propano y otros gases pueden ser parcialmente combustionados con aire. En el caso de metano en relaciones aire-gas que van de 2.4:1 a 9.7:1. Los productos de combustión son: vapor de agua, dióxido de carbono, hidrógeno, monóxido de carbono y nitrógeno y para bajas relaciones de aire-gas pequeñas cantidades de metano sin combustionar. Mucho del vapor de agua es retirado enfriando los gases para que se condensen.

2.3.1.5.4. Nitrógeno

Estas atmosferas contienen un 90 % de nitrógeno y el balance está constituido por hidrógeno o metano, el nitrógeno, hidrógeno y metano son inyectados a la cámara por tuberías separadas antes de ser mezcladas e introducidas dentro del horno.

2.3.1.6. Antecedentes Termodinámicos De Las Atmosferas De Sinterización.

La reacción de oxidación de un metal puede ser escrita como:

\[M + O_2 = MO_2 (I)\]

Si se asume que la composición química del óxido es constante una ecuación para la energía libre de Gibbs en la reacción (I) puede escribirse:

\[\Delta G_t = -RT\ln K_p = RT\ln p_{O_2}\]

Donde:

R= constante de los gases.

T= temperatura (K).

K_p= la constante de equilibrio de la reacción.
$p_{O2}= \text{presión de oxígeno a la cual la tasa de oxidación del metal es igual a la tasa de descomposición del óxido en metal.}$

En la figura 16 se muestra el llamado diagrama Ellingham-Richardson, el cual es una gráfica de temperatura vs energía libre de Gibbs para la oxidación de diversos metales [2].

![Diagrama Ellingham-Richardson](image)

Figura 16. Diagrama Ellingham-Richardson con las energías libres de Gibbs para distintos sistemas metal-óxido. Las líneas punteadas muestran valores críticos de pO2, pCO2/pCO para reducción en el sistema Cr-Cr2O3 a una temperatura de 1200 °C [19].

En el diagrama de Ellingham-Richardson se observa como la energía libre de Gibbs se vuelve menos negativa al aumentar la temperatura, pero aún a 1000 °C los valores son: -172 kJ para el Cu2O, que corresponde a una presión de oxígeno de 9.4×10^{-8} atmosferas, -251 kJ para el NiO, que corresponde a una presión de oxígeno de 5.11×10^{-11} atmosferas y de -352 kJ para el FeO que corresponde a una presión de oxígeno de 4.0×10^{-15} atmosferas. Lo que significa que el cobre, níquel
y hierro se oxidaran muy rápido a 1000 °C en una atmosfera de aire, por lo que la presión de oxígeno tiene que ser reducida a valores extremadamente bajos.

Para reducir óxidos como; Cu₂O, NiO y FeO, deben reaccionar con gases reductores, tales como: hidrogeno o monóxido de carbono. Los potenciales de reducción de estos gases pueden ser obtenidos por la combinación de la energía libre de Gibbs de la reacción de oxidación a una temperatura con la del hidrogeno y monóxido de carbono a la misma temperatura. En otras palabras, la energía libre de Gibbs de:

\[2H_2 + O_2 = 2H_2O \quad (II) \]
\[2CO + O_2 = 2CO_2 \quad (III) \]

Respectivamente tienen que restarse de (I) quedando:

\[M + 2H_2O = MO_2 + 2H_2 \quad (IV) \]
\[M + 2CO_2 = MO_2 + 2CO \quad (V) \]

Las energías libres de Gibbs de las reacciones IV y V se expresan como:

\[
-\frac{\Delta \Gamma_{IV}}{RT} = K_{pIV} = 2\ln \frac{pH_2}{pH_2O} \\
-\frac{\Delta \Gamma_{V}}{RT} = K_pV = 2\ln \frac{pCO}{pCO_2}
\]

De los valores de las energías libres de Gibbs a cualquier temperatura se pueden calcular las tasas de presiones de H₂ y H₂O y de CO y CO₂ respectivamente, en el que las reacciones de oxidación y de descomposición de los óxidos se encuentra en equilibrio. En una relación aire-gas de 6.7:1 el gas exotérmico contiene un 10 % de H₂ y el punto de roció del gas frío se encuentra a 26.6 °C, contendrá un 3.5 %Vol. De H₂O, la tasa \(\frac{pH_2}{pH_2O} \) será: 0.35 lo que lo deja del lado reductor a una temperatura de 1000 °C, pero del lado oxidante a 500 °C, lo que implica que se logrará una atmosfera reductiva durante el proceso de sinterizado, pero en la zona de enfriamiento se creará una capa de óxido en la superficie de la muestra terminada. Para evitar esto el gas de exotérmico puede ser enfriado hasta tener una temperatura de rocio de 5.6 °C, lo que provocara que tengamos un 0.82 %Vol. De H₂O, la tasa \(\frac{pH_2}{pH_2O} \) será: 0.082 lo que generará que la tasa de oxidación se ha lenta. Otra alternativa es utilizar
gas endotérmico, esto utilizando una relación aire-gas de 4:1, el cual contiene un 28 % de H₂ por lo que la tasa \(\frac{pH_2}{pH_2O} \) será: 0.125, la cual también es reductora a temperaturas suficientemente bajas.

A mayor temperatura de sinterización, las atmosferas de sinterización para aceros inoxidables, pueden tener puntos de roció mayores.

Los aceros inoxidables son sinterizados en atmosferas de amonio disociado, debido a que el nitrógeno presente en estas se disuelve en los aceros inoxidables austeníticos, confiriéndoles mayor resistencia y menor ductilidad, que cuando son sinterizados en hidrógeno o vacío. En contraste con lo que ocurre con el hierro y aceros de baja aleación.

2.3.1.7. Reacciones De Carburización-Decarburización.

Los aceros son un material importante para la metalurgia de polvos, generalmente se fabrican combinando polvos de hierro con polvos de grafito y sinterizando a temperaturas en las cuales el carbón se disuelve en el hierro formando austenita (Feγ). Las atmosferas de sinterización para acero no solo deben de ser reductoras, sino que también deben de estar en equilibrio con la composición, es decir, el contenido de carbono en la austenita que se busca producir, es decir no debe de haber una reacción de carburización, la cual es una reacción en la que el contenido de carbono de la austenita se aumenta por la interacción con la atmosfera de sinterización. Tampoco puede haber decarburización, la cual es una reacción en la que el contenido de carbono de la austenita es reducido por la interacción con la atmosfera de sinterización. Un ejemplo simple es el de una atmosfera de monóxido de carbono con dióxido de carbono y ningún otro constituyente, la cual se puede ver como la reacción siguiente:

\[
Fe + 2CO = (Fe.C) + CO_2 (VI)
\]

En donde: \((Fe.C)\) es una solución solida de carbón en austenita. La constante de equilibrio de la reacción queda de la forma:

\[
K_{pVI} = \frac{pco_2 \times a_c}{pco^2 \times a_{Fe}}
\]
En donde \(a_c \) es la actividad del hierro en una solución sólida rica en hierro con carbono en austenita y es casi 1 y se puede reescribir de la forma:

\[
K_{pVI} = \frac{pcO_2}{pCO_2} \times a_c
\]

\(a_c \) es la actividad del carbón en la austenita. A cualquier temperatura cada valor de \(a_c \) corresponde a un valor de porcentaje en peso de carbono en el acero hasta una solución sólida de austenita saturada de carbono. Por lo tanto, a cualquier temperatura la tasa \(\frac{pcO_2}{pCO_2} \) define el potencial de carburización de la atmósfera de sinterización, el cual, corresponde a un valor determinado de porcentaje en peso de carbono en austenita. Existen dos diferencias importantes entre la reacción de óxido-reducción \(Fe + CO_2 = FeO + CO \) y la reacción de carburización-decarburización

1. Que el Fe sea oxidado o el FeO sea reducido depende de la tasa \(\frac{pcO_2}{pCO_2} \), mientras que la carburización-decarburización depende de \(\frac{pcO_2}{pCO_2} \).

2. Para la reacción de oxidación-reducción existe una tasa crítica \(\frac{pcO_2}{pCO_2} \), y cualquier tasa mayor que la crítica la atmósfera será reductora y cualquier tasa menor de la tasa crítica la atmósfera será oxidativa. Mientras que en cualquier tasa \(\frac{pcO_2}{pCO_2} \) a cualquier temperatura corresponde cierta actividad de carbón en la austenita, por ejemplo, a un contenido de carbono en la aleación, un incremento en la tasa dará como resultado una reducción del potencial carburizador.

Los aceros a menudo son sinterizados en atmosferas de aire-metano en relaciones de 2.7:1, estas atmósferas contienen 40 % \(H_2 \), 20 % CO, 1 % \(CO_2 \) y el balance de nitrógeno. Para las atmósferas de CO y \(CO_2 \) puros se tiene: qwwsac

\[
Fe + 2CO = (Fe.C) + CO_2 (VI)
\]

\[
K_{pVI} = \frac{pcO_2}{pCO_2} \times a_c
\]

Para el caso de las mezclas aire-metano se tiene:

\[
Fe + CH_4 = (Fe.C) + 2H_2 (VII);
\]

\[
K_{pVII} = \frac{pH_2}{pCH_4} \times a_c
\]
\[
Fe + CO + H_2 = (Fe.C) + H_2O (VIII);
\]

\[
K_{p_{VIII}} = \frac{pH_2O}{pCO \cdot pH_2^x a_c}
\]

Cambios leves en las presiones parciales de los gases carburantes (CH\textsubscript{4}) y descarburantes (CO\textsubscript{2} y H\textsubscript{2}O), provocarán grandes cambios en el potencial carburante. Esto quiere decir que, para un potencial carburante, correspondiente a una actividad o un porcentaje en peso de carbono en la aleación solo existe una posible combinación de pCO\textsubscript{2}, pH\textsubscript{2}O y pCH\textsubscript{4} a una determinada temperatura, es decir, no es posible cambiarlas de forma independiente entre sí, lo que quiere decir que el potencial carburante puede ser medido midiendo solo una de estas presiones parciales. El potencial carburante puede ser modificado para un porcentaje de carbón más elevado en el material agregando CH\textsubscript{4} o bajándolo agregando aire.

De una revisión de la reacción VII, podemos concluir que al sinterizar aleaciones de hierro-carbón en atmosferas de hidrógeno y amonio disociado, se producirá una decarburización de la aleación, sin embargo, en la práctica, se ha observado que, si las atmosferas de hidrógeno y amonio disociado son suficientemente secas, la velocidad de decarburización será muy lenta. Sin embargo, el uso de estas atmosferas implica un riesgo debido a que se encuentran fuera del equilibrio termodinámico, mientras que al utilizar las mezclas de aire-gas se alcanza el equilibrio termodinámico.

2.3.1.8. Sinterización De Fase Líquida

Los mecanismos para la sinterización en fase líquida, aun no quedan claros, se sabe que existen dos mecanismos principales, uno en el que la fase líquida es presente durante todo el tiempo de sinterizado, en este la sinterización se da en la región entre el solidus y liquidus, lo que provoca que haya heterogeneidad durante el proceso de sinterización. Por este mecanismo se da la sinterización de partículas de tungsteno y hasta un 10 % de Cu, Fe o Ni, y el segundo mecanismo es en el que la fase líquida solo está presente en el precalentamiento de la muestra, y al momento de llegar a la temperatura de sinterización, la fase líquida desaparece por interdifusión, en este se pueden obtener conformados con composiciones homogéneas o heterogéneas de dos o más fases.
Compactos de mezclas de polvos de hierro y contenidos de cobre menores al límite de solubilidad del cobre en la austenita (7 % a 1150 °C), pueden ser calentados de forma lenta, lo cual provocará que se dé una sinterización en estado sólido y el mecanismo sea interdifusional, mientras que, si son enfriados lo suficientemente rápidamente que no se pueda dar la interdifusión, el mecanismo de sinterización de fase líquida se puede activar.

2.3.1.9. Sinterización De Polvos Sin Compactar.

La sinterización se por el crecimiento por acción de la capilaridad y tensión superficial creadas por el contacto entre partículas, para esto no es necesario utilizar un proceso de compactado, sin embargo, en la mayoría de las aplicaciones tecnológicas de metalurgia de polvos se utiliza un paso de compactado, el cual permite obtener densidades cercanas a las teóricas.

La sinterización de polvos sin compactar tiene interés en áreas en las que desee obtener materiales metálicos porosos. Tiene las ventajas de su simplicidad, versatilidad, economía de operación y la habilidad de sinterizar piezas con gran relación longitud/espesor.

2.3.2 Aleaciones De Polvos Metálicos Resistentes Al Desgaste.

Las aleaciones de polvos metálicos resistentes al desgaste incluyen carburos de tungsteno cementados, polvos metálicos de aceros y polvos metálicos de materiales compuestos metal-matriz [28].

2.3.2.1. Carburos De Tungsteno Cementados.

Los carburos de tungsteno cementados son los polvos metálicos empleados más ampliamente para aplicaciones resistentes al desgaste, se utilizan para todo tipo de desgastes, incluidos abrasivos, por deslizamiento y erosivo. Los carburos de tungsteno cementados es un material compuesto de WC-Co, con contenidos de cobalto que van desde un 6 % hasta un 16 %, aunque para aplicaciones se puede ampliar el rango desde 3% hasta 25 %.

La microestructura típica está conformada por granos de WC, estas actúan como las partículas duras, las cuales están rodeadas por cobalto metálico y este actúa como la fase dúctil. La dureza del
material compuesto, es inversamente proporcional al contenido de cobalto. Para las aplicaciones de resistencia al desgaste se deben tomar en cuenta diferentes propiedades mecánicas, tales como: la resistencia contra la deformación plástica, la formación de fracturas y la propagación de fracturas. La formación de fracturas es de mayor importancia en los materiales cerámicos, mientras que la propagación de fracturas es de mayor importancia en las aleaciones metálicas.

Las aplicaciones típicas incluyen herramientas de corte, puntas para taladrado de rocas y tierra, punzones y dados para compresión, componentes para desgaste y otras aplicaciones especiales de ingeniería [28].

2.3.2.2. Polvos Metálicos De Acero Grado Herramienta.

Las composiciones de los aceros varían en contenido de carbono, así como elementos de aleación tales como: manganeso y fosforo. Los polvos metálicos más utilizados para aplicaciones de resistencia al desgaste son los polvos metálicos de acero grado herramienta, las aleaciones en forma de polvos ofrecen ventajas respecto a la forma convencional, entre ellas, el tamaño de grano más fino, una microestructura homogénea con menos segregación, una cercanía mayor a la forma final, lo que reduce los procesos de maquinado. En la tabla 4 se presentan las composiciones de los polvos metálicos comerciales de acero grado herramienta. En los polvos metálicos de acero grado herramienta el contenido de carburos es menor al 50 %, generalmente en el orden de 10-20 %. A pesar de que la resistencia al desgaste es directamente proporcional al contenido de carburos, se ha encontrado que en algunos aceros esta relación se detiene al aumentar el contenido de carburos por encima del 30 %.

Los aceros herramientas se pueden considerar materiales compuestos, de matriz metálica con partículas de refuerzo del tipo de carburos primarios, tales como: MC, M₂C y M₆C, donde M, puede ser, V, W, Mo o Cr. Para las aplicaciones que requieren mejor resistencia al desgaste, se prefiere la presencia de los carburos primarios de la forma: MC y M₂C, ya que, tienen una mejor resistencia al desgaste.
Las aplicaciones típicas de estos materiales son: herramientas de corte para remover metal, herramientas para conformado y maquinado de metales, brocas, entre otras, se prefieren para aplicaciones en las que se necesita una mejor resistencia al impacto que le presentada por los carburos de tungsteno cementados.

Tabla 4. Composiciones de los polvos metálicos comerciales de acero grado herramienta.

<table>
<thead>
<tr>
<th>Trade name</th>
<th>AISI designation</th>
<th>Constituent elements, %</th>
<th>Hardness, HRC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>C</td>
<td>Cr</td>
</tr>
<tr>
<td>High-speed tool steels</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ASP 23</td>
<td>M3</td>
<td>1.28</td>
<td>4.20</td>
</tr>
<tr>
<td>ASP 30</td>
<td>...</td>
<td>1.28</td>
<td>4.20</td>
</tr>
<tr>
<td>ASP 60</td>
<td>...</td>
<td>2.30</td>
<td>4.00</td>
</tr>
<tr>
<td>CPM Rex M2HCHS</td>
<td>M2</td>
<td>1.00</td>
<td>4.15</td>
</tr>
<tr>
<td>CPM Rex M3HCHS</td>
<td>M3</td>
<td>1.30</td>
<td>4.00</td>
</tr>
<tr>
<td>CPM Rex M4</td>
<td>M4</td>
<td>1.35</td>
<td>4.25</td>
</tr>
<tr>
<td>CPM Rex M4HS</td>
<td>M4</td>
<td>1.35</td>
<td>4.25</td>
</tr>
<tr>
<td>CPM Rex M5HCHS</td>
<td>M35</td>
<td>1.00</td>
<td>4.15</td>
</tr>
<tr>
<td>CPM Rex M42</td>
<td>M42</td>
<td>1.10</td>
<td>3.75</td>
</tr>
<tr>
<td>CPM Rex 45</td>
<td>...</td>
<td>1.30</td>
<td>4.00</td>
</tr>
<tr>
<td>CPM Rex 46HS</td>
<td>...</td>
<td>1.30</td>
<td>4.00</td>
</tr>
<tr>
<td>CPM Rex 20</td>
<td>M62</td>
<td>1.30</td>
<td>3.75</td>
</tr>
<tr>
<td>CPM Rex 25</td>
<td>M61</td>
<td>1.80</td>
<td>4.00</td>
</tr>
<tr>
<td>CPM Rex T15</td>
<td>T15</td>
<td>1.55</td>
<td>4.00</td>
</tr>
<tr>
<td>CPM Rex T15HS</td>
<td>T15</td>
<td>1.55</td>
<td>4.00</td>
</tr>
<tr>
<td>CPM Rex 76</td>
<td>M48</td>
<td>1.50</td>
<td>3.75</td>
</tr>
<tr>
<td>CPM Rex 76HS</td>
<td>M48</td>
<td>1.50</td>
<td>3.75</td>
</tr>
<tr>
<td>HAP 10</td>
<td>...</td>
<td>1.35</td>
<td>3.0</td>
</tr>
<tr>
<td>HAP 40</td>
<td>...</td>
<td>1.30</td>
<td>4.0</td>
</tr>
<tr>
<td>HAP 50</td>
<td>...</td>
<td>1.50</td>
<td>4.0</td>
</tr>
<tr>
<td>HAP 60</td>
<td>...</td>
<td>2.00</td>
<td>4.0</td>
</tr>
<tr>
<td>HAP 70</td>
<td>...</td>
<td>2.00</td>
<td>4.0</td>
</tr>
<tr>
<td>KHA 33N</td>
<td>...</td>
<td>0.95</td>
<td>4.0</td>
</tr>
</tbody>
</table>

Cold-work tool steels

CPM 9V	...	1.78	5.25	1.30	9.00	0.03				53-55
CPM 10V	All	2.45	5.25	1.30	9.75	0.07				60-62
CPM 440V	...	2.15	17.50	0.50	5.75					57-59
Vanadis 4	...	1.50	8.00		1.50	4.00				59-63

Hot-work tool steels

| CPM H13 | H13 | 0.40 | 5.00 | 1.30 | 1.05 | | | | | 42-48 |
| CPM H19 | H19 | 0.40 | 4.25 | 4.25 | 0.40 | 2.10 | 4.25 | | | 44-52 |

Referencia [28].
2.3.2.3. Polvos Metálicos De Materiales Compuestos De Matriz Metálica.

El concepto de material compuesto de matriz metálica incluye un gran número de metales con al menos un tipo de refuerzo, este refuerzo puede estar en la forma de: Fibras largas, fibras cortas o partículas. Se sabe que tienen un gran potencial para mejorar la resistencia al desgaste, sin embargo, aún no se entienden las características por las cuales se logra esta mejora, y esto es debido a la complejidad de muchos de los procesos de desgaste, además de lo complejo de la interacción con su microestructura, la cual varía con el contenido de agentes reforzantes, su tamaño, la orientación, la resistencia de la interfase, entre otros [28].

Los factores más importantes que afectan la resistencia al desgaste en los materiales compuestos de matriz metálica son: fracción volumétrica de las partículas de refuerzo, el tamaño de partícula y la relación entre el diámetro de la partícula de refuerzo con el tamaño de partícula abrasiva.

3. Metodología Experimental.

3.1 Preparación De Suspensión.

La preparación de la suspensión se realiza mezclando los polvos metálicos de FeBCCr de acuerdo a [1], en esta se plantea realizar la suspensión de polvos metálicos de FeBCCr con alcohol polivinilico, se realizaron pruebas utilizando esto, sin embargo, presentaba problemas, tales como, la dificultad para realizar el secado, esto debido a que siempre quedaba agua molecular atrapada en la cadena del alcohol polivinilico, lo que provocaba grietas en la superficie de las muestras, además de que se generaba una capa de carbono entre el sustrato y el recubrimiento, la cual evitaba que se diera una buena adherencia entre el sustrato y el recubrimiento, debido a estos inconvenientes se modificó la naturaleza de la suspensión utilizando agua en lugar del alcohol polivinilico, como medio para la suspensión, con esto se eliminaron los problemas antes descritos. En la tabla 5 se presenta la composición elemental de los polvos metálicos de FeBCCr, en primer instancia los reportados por el fabricante y en la segunda fila, por el analizador de chispa, de polvos metálicos de FeBCCr.
sinterizados en atmósfera inerte. Se observan diferencias en la composición antes y después de sinterizar, lo que atribuimos a los cambios de fases presentes en el calentamiento, así como al efecto del fundente.

Tabla 5. Composición elemental de los polvos metálicos de FeBCCr, empleados como recubrimiento hardfacing.

<table>
<thead>
<tr>
<th>Elemento</th>
<th>B</th>
<th>C</th>
<th>Cr</th>
<th>Mn</th>
<th>Ni</th>
<th>Si</th>
<th>Fe</th>
</tr>
</thead>
<tbody>
<tr>
<td>% En peso fabricante</td>
<td>2.8 - 3.8</td>
<td>1.7 - 2.7</td>
<td>14 - 15</td>
<td>0.25 - 0.35</td>
<td>5.20 - 6.20</td>
<td>2.5 - 3.5</td>
<td>Resto</td>
</tr>
<tr>
<td>% En peso medido</td>
<td>1.32</td>
<td>3.23</td>
<td>9.318</td>
<td>1.52</td>
<td>3.956</td>
<td>5.5</td>
<td>Resto</td>
</tr>
</tbody>
</table>

Se realizaron pruebas de suspensiones con variaciones en el contenido de polvos metálicos de FeBCCr, fundente y agua las que se presentan en la tabla 6. De estas la composición con mejor comportamiento en la aplicación con el patín fue 89% polvos metálicos de FeBCCr, 9% de agua y 2% fundente.

Tabla 6. Composición de las suspensiones.

<table>
<thead>
<tr>
<th>Componente</th>
<th>% en peso</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polvos metálicos</td>
<td>89</td>
<td>87</td>
<td>84</td>
<td>90</td>
<td>88</td>
<td>85</td>
<td>91</td>
<td>89</td>
<td>86</td>
</tr>
<tr>
<td>Fundente</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Agua</td>
<td>9</td>
<td>11</td>
<td>14</td>
<td>9</td>
<td>11</td>
<td>14</td>
<td>9</td>
<td>11</td>
<td>14</td>
</tr>
</tbody>
</table>

3.2 Aplicación De Suspensión Sobre Acero Al Boro, con un 0.00175 % en peso de boro.

El sustrato de acero al boro, con un 0.00175 % en peso de boro, cuya composición es presentada en la tabla 7. Debe de ser preparado superficialmente para mejorar el anclaje de los polvos con este después del sinterizado, el cual consiste en: desbaste por chorro de arena para eliminar la capa de óxido superficial, después del desbaste por chorro de arena se limpia en un baño de ultrasonido con acetona, para eliminar la grasa superficial, producto del manejo manual de las placas,
de ahí se colocan, tanto la placa como la suspensión de acuerdo a la figura 17. una vez aplicado se pasa a un proceso de secado en una estufa a 200 °C.

Tabla 7. Composición elemental del acero al boro, con un 0.00175 % en peso de boro, empleado como sustrato.

<table>
<thead>
<tr>
<th>Elemento</th>
<th>C</th>
<th>Si</th>
<th>Mn</th>
<th>P</th>
<th>S</th>
<th>Cr</th>
<th>Al</th>
<th>B</th>
<th>Fe</th>
</tr>
</thead>
<tbody>
<tr>
<td>% En peso fabricante</td>
<td>0.3</td>
<td>0.21</td>
<td>1.14</td>
<td>0.0155</td>
<td>0.006</td>
<td>0.195</td>
<td>0.0465</td>
<td>0.00175</td>
<td>Resto</td>
</tr>
<tr>
<td>% en peso medido</td>
<td>0.335</td>
<td>0.224</td>
<td>1.19</td>
<td>0.012</td>
<td>0.0047</td>
<td>0.199</td>
<td>0.038</td>
<td>0.0013</td>
<td>Resto</td>
</tr>
</tbody>
</table>

Figura 17. Proceso de aplicación de la suspensión de polvos metálicos de FeBCCr sobre acero al boro con un 0.00175 % en peso de boro.

3.3 Pruebas de secado.

Se realizó una prueba de tiempo de secado por pérdida de peso en muestras de 7.62 x 2.54 cm, para asegurar la eliminación del agua, esta consistió en aplicar la suspensión sobre una placa de acero al boro, con un 0.00175 % en peso de boro, se pesó, esto para tener el peso inicial total, posteriormente se colocó en una estufa a tres diferentes temperaturas: 100, 150 y 200 °C y cada 10
minutos se sacaba para pesar, esto hasta que el peso se estabilizará, debido a la eliminación total del agua. De las pruebas de secado se estableció que las condiciones óptimas de secado son: temperatura 200 °C y tiempo: 80 minutos

3.4 Pruebas de sinterización.

Las condiciones de sinterización empleadas fueron mantener a una temperatura de 1140 °C por un tiempo de 10 minutos, estas condiciones se determinaron realizando pruebas de dilatometría de las suspensiones secas empleadas, con un dilatómetro de la marca Expert System Solutions; Modelo Misura ODHT 1400-80, la curva de calentamiento empleada para la sinterización de las muestras se presenta en la figura 18. En la cual registramos la temperatura de la mufla y la temperatura al interior de un tubo de acero 316L, el cual se utilizó como cámara para el aseguramiento de una atmósfera controlada.

![Figura 18. Curva de calentamiento de recubrimiento hardfacing.](image)

Esta rampa de calentamiento se logró al trabajar con la puerta de la mufla abierta, y cerrada con una placa cerámica, con una perforación al centro de 5 cm de diámetro, la cual permite el ingreso
de un tubo de acero 316L, dentro del cual se encuentra la muestra y las conexiones de entrada y salida de la atmosfera protectora como se ve en la figura 19.

Figura 19. imagen del tubo de acero 316L al interior de la mufla con la entrada y salida para los gases de atmosfera.

La mufla se programa a una temperatura de 1200 °C, esto con el objetivo de que el interior del tubo alcance la temperatura de sinterización. La curva de calentamiento se realizó haciendo un barreno hasta una profundidad de 3.8 cm al centro de la muestra y poniendo dentro de esta la punta del termopar para determinar la temperatura real de la muestra y comparando las temperaturas del termopar de la mufla con las mediciones del termopar al interior de la muestra, esto con el fin de encontrar una relación de la temperatura de la mufla con la temperatura exacta de la muestra, y de esta forma poder usar de referencia la temperatura de la mufla y no tener una variación en la atmosfera al estar midiendo las temperaturas al interior del tubo durante las pruebas. De estas curvas de calentamiento se determinó que cuando la temperatura de la mufla fuera de: 1170 °C, la temperatura al interior de la muestra sería de 1140 °C, la cual es la temperatura de sinterización de los polvos metálicos de FeBCCr, la temperatura al sacar el tubo de la mufla aumenta hasta 1144 °C y el tiempo total de prueba es de 57 minutos. De acuerdo a la tabla 8.
Tabla 8. Relación entre el tiempo de permanencia con las temperaturas de la mufla y el interior de la muestra.

<table>
<thead>
<tr>
<th>Tiempo (minutos)</th>
<th>Temperatura display mufla (°C)</th>
<th>Temperatura muestra (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1196</td>
<td>37.8</td>
</tr>
<tr>
<td>10</td>
<td>1146</td>
<td>1112</td>
</tr>
<tr>
<td>20</td>
<td>1156</td>
<td>1125</td>
</tr>
<tr>
<td>30</td>
<td>1162</td>
<td>1131</td>
</tr>
<tr>
<td>40</td>
<td>1167</td>
<td>1136</td>
</tr>
<tr>
<td>47</td>
<td>1170</td>
<td>1140</td>
</tr>
<tr>
<td>50</td>
<td>1171</td>
<td>1141</td>
</tr>
<tr>
<td>57</td>
<td>1174</td>
<td>1144</td>
</tr>
</tbody>
</table>

Con la curva de calentamiento definida se probaron las diferentes atmosferas: 100 % CO\(_2\), 90 % CO\(_2\) + 10 % CO, 70 % CO\(_2\) + 30 % CO, 50 % CO\(_2\) + 50 % CO, 30 % CO\(_2\) + 70 % CO y 10 % CO\(_2\) + 90 % CO. Se emplearon dos medios de enfriamiento diferentes aire y agua, las muestras enfríadas en aire se utilizan como referencia y no se evaluó su resistencia al desgaste, debido a que se contaba con poco material para el sustrato y que los primeros resultados de resistencia al desgaste en las muestras sinterizadas en atmósfera de 100 % CO\(_2\) y enfríadas en aire eran inferiores a los resultados presentados por las muestras sinterizadas en la misma atmósfera, y enfríadas en agua, esto además de que se buscaba que el sustrato tuviera un tratamiento térmico de endurecimiento, en la tabla 9 se muestran todas las condiciones de pruebas realizadas.
Tabla 9. Condiciones de atmosfera y enfriamiento de las pruebas realizadas.

<table>
<thead>
<tr>
<th>Atmosfera</th>
<th>Enfriamiento</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 % CO₂</td>
<td>Aire</td>
</tr>
<tr>
<td>100 % CO₂</td>
<td>Agua</td>
</tr>
<tr>
<td>90 % CO₂ + 10 %CO</td>
<td>Aire</td>
</tr>
<tr>
<td>90 % CO₂ + 10 %CO</td>
<td>Agua</td>
</tr>
<tr>
<td>70 % CO₂ + 30 %CO</td>
<td>Aire</td>
</tr>
<tr>
<td>70 % CO₂ + 30 %CO</td>
<td>Agua</td>
</tr>
<tr>
<td>50 % CO₂ + 50 %CO</td>
<td>Aire</td>
</tr>
<tr>
<td>50 % CO₂ + 50 %CO</td>
<td>Agua</td>
</tr>
<tr>
<td>30 % CO₂ + 70 %CO</td>
<td>Aire</td>
</tr>
<tr>
<td>30 % CO₂ + 70 %CO</td>
<td>Agua</td>
</tr>
<tr>
<td>10 % CO₂ + 90 %CO</td>
<td>Aire</td>
</tr>
<tr>
<td>10 % CO₂ + 90 %CO</td>
<td>Agua</td>
</tr>
</tbody>
</table>

3.5 Preparación Y Observación En Microscopia Óptica.

Las muestras sinterizadas en las diferentes atmosferas y enfriadas en los distintos medios de temple mostrados en la tabla son cortados en una máquina de corte con disco de diamante en dos secciones de 1.27cm x 0.70cm, una de las cuales es embriquetada, para observar la superficie transversal con baquelita, para facilitar el manejo en la preparación metalográfica, la cual consiste en hacer un desbaste con lijas de SiC 80, 120, 320, 600, 800, 1000 y 1200, al terminar el desbaste con cada lija la muestra es girada 90° para cambiar la dirección de las marcas dejadas por la lija anterior, así entre cada lija. Al terminar el desbaste con la lija 1200 se procede a hacer un pulido con pasta de diamante de 1μm, para eliminar todas las rayas dejadas por la etapa de desbaste y terminar con un acabado espejo.

Cada muestra se observó tres veces, una el recubrimiento sin ataque para determinar la morfología de la porosidad, la segunda se atacó con nital al 3 % para revelar la microestructura del sustrato y la tercera ocasión se realiza un ataque electrolítico el recubrimiento con ácido oxálico al
10 % y 6V auxiliándonos de una fuente de poder Agilent 6683A, esto para revelar la microestructura del recubrimiento.

3.6 Preparación Y Observación En Microscopia Electrónica De Barrido.

Las muestras sinterizadas y preparadas metalográficamente, después de ser observadas en el microscopio óptico con cada condición, es decir, sin ataque, ataque en el sustrato y ataque en el recubrimiento fueron observadas en el microscopio electrónico de barrido Hitachi SU3500, para esto las muestras embriquetadas tenían que crear un camino conductor entre la muestra y el porta muestras del microscopio electrónico de barrido, para esto nos auxiliábamos de una cinta cobre que unía la pieza metálica con el porta muestras.

Se observaban con técnicas de electrones retrodispersados para observar las variaciones composicionales, en el caso del recubrimiento sin ataque y con electrones secundarios para las muestras con ataques químicos y electroquímicos, esto puesto que, por la acción química se generan ataques selectivos en límites de grano y ataques a distintas velocidades en las distintas fases, de las fases observadas por la técnica de electrones retrodispersados, se utilizaba la técnica de espectroscopia de energía dispersiva (EDS por sus siglas en inglés), con esta técnica podemos realizar microanálisis composicionales semicuantitativos, para determinar la composición de cada fase, esto debido a la producción de rayos X, por la interacción del haz de electrones con los electrones de los niveles más cercanos al núcleo de los átomos de la muestra.

Además de las doce muestras producto de las diferentes condiciones de atmosfera y medio de enfriamiento se analizaron por esta técnica las marcas dejadas por la prueba de desgaste, para esto solo se realiza una limpieza superficial y se observaban por electrones secundarios, esto para identificar la morfología de las marcas producidas por el medio abrasivo.

3.7 Difracción De Rayos X.
Cada una de las muestras se cortaron en secciones de 2.54 x 2.00 cm, para que se pueda colocar en el porta muestras del Difractometro de rayos X Panalytical X’Pert Plus, después cada muestra fue devastada con lija de SiC, para eliminar la rugosidad superficial, y se volvió a realizar la corrida para observar si las fases eran las mismas en la zona superficial que en el interior de la misma, las condiciones para la obtención de los patrones de rayos X fueron las siguientes:

- Tamaño de paso= 0.03°.
- Tiempo de paso= 10 s.
- Rango= 20-80°.

3.8 Pruebas De Microdureza.

Para la realización de las pruebas de microdureza se utilizó un microdurometro marca Future Tech MH-00 con escala Vickers y se utilizaron las mismas muestras que se emplearon para su observación en microscopia óptica y microscopía electrónica de barrido, solo que se lleva a cabo un repulido de las muestras para eliminar el adhesivo dejado por la cinta de cobre, así como, liberar zona sin ataque químico para volver a tener un acabado espejo, el cual facilita la medición de las huellas.

Las condiciones de prueba empleadas fueron:

- Carga= 500 g.
- Tiempo= 12 s.

En cada muestra se realizaron al menos cinco indentaciones en el recubrimiento y cinco indentaciones en el sustrato, de ellas se saca un promedio y son los resultados presentados. Se presentan resultados en dos escalas, Vickers y Rockwell C, la primera porque son las unidades estándar para las mediciones de microdureza Vickers y la segunda para tener una referencia comparativa más clara.

3.9 Pruebas De Nanodureza.

Las muestras fueron cortadas en dos secciones de 1.27 x 0.70 cm, una de las cuales se embriquetó y se utilizó para las técnicas de caracterización de microscopia óptica, microscopía electrónica de barrido y microdureza. La otra sección se empleó para las pruebas de nanodureza, las
cual es realizaron en un nanoidentador marca Agilent Technologies G200. Las condiciones de la prueba fueron:

- Carga máxima= 2 mN.
- Tiempo de carga= 10 s.
- Tiempo en carga máxima= 2 s.

3.10 Pruebas De Resistencia Al Desgaste.

La prueba de resistencia al desgaste se hizo de acuerdo a la norma ASTM G65, midiendo la abrasión usando el aparato de arena seca/ rueda de caucho, la cual tiene como objetivo medir la resistencia a la abrasión por arena de materiales metálicos, para poder ubicar distintos materiales en su resistencia al desgaste de forma reproducible, estos resultados son presentados en pérdida de peso.

La prueba consiste en: con las muestras ya sinterizadas se limpian con acetona en un baño de ultrasonido por 10 minutos para eliminar suciedad, posteriormente se pesa en una balanza con una precisión de 0.001 g. después se coloca la muestra en el porta muestras del equipo con la cara a degastar frente a la rueda de caucho, se hace girar la rueda y en una tolva se coloca la arena de sílice Ottawa con tamaño de partícula de 300-212µm (equivalentes a malla 50-70, 5 % malla 50 y 95 % malla 70), y dejar que salga con un flujo controlado a través de una boquilla que permita un flujo de arena en forma de cortina a lo largo de toda la boquilla, al tener la rueda girando se libera el brazo con la carga y la muestra queda en contacto con la rueda girando, la arena cae desde la boquilla entre la rueda y la arena, al concluir el ciclo de desgaste se sube el brazo y se detiene el giro, se deja enfriar y se retira la muestra, se limpia con acetona en un baño de ultrasonido por 10 minutos y se pesa para registrar la pérdida de peso. En este caso se presentan los resultados en pérdida de peso, por la dificultad de medir la densidad únicamente del recubrimiento, sin tomar en cuenta el sustrato.

En la figura 20 se presenta una fotografía del equipo empleado para la realización de la prueba de abrasión usando el aparato de arena seca/ rueda de caucho, el cual fue diseñado de acuerdo a la norma.
La norma contempla cinco métodos para la prueba, y son los procedimientos A, B, C, D y E, de los cuales seleccionamos el procedimiento “B”, el cual se presenta en la tabla 10, la velocidad de giro de la rueda es de 200 rpm +/- 10, flujo de arena entre 300 y 400 g/min.

<table>
<thead>
<tr>
<th>Procedimiento</th>
<th>Fuerza aplicada contra la muestra (N)</th>
<th>Giros de la rueda</th>
<th>Abrasión lineal (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>130</td>
<td>2000</td>
<td>1436</td>
</tr>
</tbody>
</table>

4. Resultados y discusión.

4.1 Pruebas De Secado.

En la figura 21 se presentan las pruebas de secado realizadas a 100, 150 y 200 °C, en estas se presenta, la pérdida de peso respecto al tiempo de secado, de las cuales se definió que las mejores condiciones de secado eran 200 °C por un tiempo de 80 minutos, a partir de esto todas las pruebas se realizaran con estas condiciones de secado.
Figura 21. Pérdida de peso en el proceso de secado.

4.2 Pruebas Dilatométricas.

En la figura 22 se presenta la curva dilatométrica de los polvos metálicos de FeBCCr, esta se realizó con el objetivo de determinar la temperatura de sinterización de los mismos.

Figura 22. Curvas de dilatometría de los polvos metálicos de FeBCCr.
En la gráfica se observa que el inicio de la compactación se da a 1140 °C, temperatura que marca la velocidad máxima del proceso de sinterización, temperatura por debajo de la reportada por [2, 3, 19], para sinterizar polvos metálicos de aleaciones similares, para [3], su temperatura de sinterización es de 1249 °C, debido a su bajo contenido de carbono (0.018 % C) y elevado contenido de cromo (16.9 %) y para [19] de 1250 °C, con contenidos bajos de carbono (<0.01 %) y cromo (0.8 – 3.0 %), a estos elementos le atribuimos la modificación de la temperatura de sinterización.

4.3 Microscopía Óptica.

En la figura 23 se presentan las imágenes de microscopía óptica de las muestras sinterizadas en atmosfera de 100 % CO₂ en (a) enfriadas en aire quieto y (b) enfriadas en agua. En estas se observa que la muestra enfriadas en aire quieto presenta fases duras formado por fases duras de tipo M_7C_3, M_3C, MC, M_2B y $M_{23}B_6$, rodeadas de un eutéctico en forma laminar, el cual está formado por fases duras de tipo M_7C_3, M_3C, MC, M_2B y $M_{23}B_6$, acompañadas de un constituyente metálico, como las descritas en [25], mientras que en la enfriada en agua se observa que existen fases duras medianas del tipo M_7C_3, M_3C, MC, M_2B y $M_{23}B_6$ rodeadas de fases duras pequeñas en forma de esqueleto, del tipo M_7C_3, M_3C, MC, M_2B y $M_{23}B_6$, como las descritas en [25].

![Figura 23. Micrografías de las muestras sinterizadas en atmosfera de 100 % CO₂ enfriadas en (a) aire quieto y (b) agua.](image-url)
En la figura 24 se presentan las imágenes de microscopia óptica de las muestras sinterizadas en atmósfera de 90 % CO₂ – 10 % CO en (a) enﬁriadas en aire quieto y (b) enﬁriadas en agua. En la muestra enﬁriada en aire quieto se observan fases duras del tipo M₇C₃, M₃C, MC, M₂B y M₂₃B₆ rodeadas de fase eutéctica laminar, el cual está formado por fases duras de tipo M₇C₃, M₃C, MC, M₂B y M₂₃B₆ acompañadas de un constituyente metálico, como las descritas en [25] y la fase vítrea se ve en forma esférica, mientras que la muestra enﬁriada en agua se presentan fases duras más pequeñas sin la presencia del eutéctico laminar y la fase vítrea pierde su forma esférica.

![Micrografías de las muestras sinterizadas en atmósfera de 90 % CO₂ – 10 % CO enﬁriadas en (a) aire quieto y (b) agua.](image)

Figura 24. Micrografías de las muestras sinterizadas en atmósfera de 90 % CO₂ – 10 % CO enﬁriadas en (a) aire quieto y (b) agua.

En la figura 25 se presentan las imágenes de microscopia óptica de las muestras sinterizadas en atmósfera de 70 % CO₂ – 30 % CO en (a) enﬁriadas en aire quieto y (b) enﬁriadas en agua. En las muestras enﬁriadas en aire quieto y en agua se observa la presencia del eutéctico laminar, formado por fases duras de tipo M₇C₃, M₃C, MC, M₂B y M₂₃B₆ acompañadas de un constituyente metálico, como las descritas en [25], sin embargo, en las muestras enﬁriadas en agua se encuentra una menor cantidad de esta fase.
Figura 25. Micrografías de las muestras sinterizadas en atmosfera de 70 % CO₂ – 30 % CO enfriadas en (a) aire quieto y (b) agua.

En la figura 26, se presentan las imágenes de microscopia óptica de las muestras sinterizadas en atmosfera de 50 % CO₂ – 50 % CO en (a) enfriadas en aire quieto y (b) enfriadas en agua. Se observa que la muestra enfriada en aire quieto tiene fases duras del tipo M₇C₃, M₃C, MC, M₂B y M₂₃B₆ rodeadas de una fase eutéctica laminar, el eutéctico está formado por estas mismas fases duras, acompañadas de un constituyente metálico como las descritas en [25], mientras que la enfriada en agua tiene fases duras más pequeñas del tipo M₇C₃, M₃C, MC, M₂B y M₂₃B₆ y se vuelve a perder la forma esférica de la fase vítrea al modificar el medio de enfriamiento, puesto que, en las enfriadas en aire quieto, la fase vítrea se observa de forma esférica, mientras que la muestra enfriada en agua, la fase vítrea tiene una morfología irregular, esto lo atribuimos al aumento en la velocidad de enfriamiento.
Figura 26. Micrografías de las muestras sinterizadas en atmosfera de 50 % CO2 – 50 % CO enfríasas en (a) aire quieto y (b) agua.

En la figura 27 se presentan las imágenes de microscopía óptica de las muestras sinterizadas en atmosfera de 30 % CO2 – 70 % CO en (a) enfriadas en aire quieto y (b) enfriadas en agua. Se observa que en ambos casos las fases duras del tipo M7C3, M3C, MC, M2B y M23B6, se encuentran en forma de placas pequeñas sin la presencia de eutéctico laminar, además, se observa que la fase vítrea no conserva su forma esférica en ninguno de los dos casos.

Figura 27. Micrografías de las muestras sinterizadas en atmosfera de 30 % CO2 – 70 % CO enfríasas en (a) aire quieto y (b) agua.

En la figura 28 se presentan las imágenes de microscopía óptica de las muestras sinterizadas en atmosfera de 10 % CO2 – 90 % CO en (a) enfriadas en aire quieto y (b) enfriadas en agua. Se observa que la muestra enfriada en aire quieto presenta en su microestructura placas de fase duras del tipo M7C3, M3C, MC, M2B y M23B6, rodeadas de una fase eutéctica laminar como las descritas en [25], el eutéctico está formado por estas mismas fases duras, acompañadas de un constituyente metálico y la fase vítrea tiene una morfología irregular, mientras que la muestra enfriada en agua presenta placas más pequeñas de fases duras y de la misma forma la fase vítrea tiene una morfología irregular.
Figura 28. Micrografías de las muestras sinterizadas en atmósfera de 10 % CO$_2$ – 90 % CO enfriadas en (a) aire quieto y (b) agua.

Las fases duras de acuerdo a [25] son del tipo M$_7$C$_3$, M$_3$C, MC, M$_2$B y M$_{23}$B$_6$ y el eutéctico está formado por estas mismas fases duras, acompañadas de un constituyente metálico, esta es la razón, por la que la fase eutéctica puede deformarse, al momento de aplicarse un esfuerzo sobre las piezas, además de que puede absorber energía para llevar un cambio de fase, todo esto favorece una mejor resistencia al desgaste.

Las fases duras del tipo M$_7$C$_3$, M$_3$C, MC, M$_2$B y M$_{23}$B$_6$, en todos los casos M puede ser, Fe, Mn o Cr, o cualquier combinación de estos elementos, debido a sus tamaños similares pueden sustituirse entre ellos en la estructura cristalina de las fases duras, sin generar una deformación significativa de estas.

4.4 Microscopía electrónica de barrido.

Las imágenes obtenidas por la técnica de microscopía electrónica de barrido fueron de áreas transversales, tanto para el recubrimiento como para el sustrato. En la figura 29, se presentan las imágenes del sustrato enfriado en aire quieto con cada atmósfera de sinterización en: (a) 100 % CO$_2$, (b) 90 % CO$_2$ -10 % CO, (c) 70 % CO$_2$ -30 % CO, (d) 50 % CO$_2$ -50 % CO, (e) 30 % CO$_2$ -70 % CO, (f) 10 % CO$_2$ -90 % CO. Todas atacadas con nital al 3 %.
Figura 29. Micrografías de las muestras enfríasdas en aire quieto sinterizadas en atmosferas de
(a) 100 % CO$_2$, (b) 90 % CO$_2$ - 10 % CO, (c) 70 % CO$_2$ - 30 % CO, (d) 50 % CO$_2$ - 50 % CO,
(e) 30 % CO$_2$ - 70 % CO, (f) 10 % CO$_2$ - 90 % CO.

En la figura 30, se presentan las imágenes del sustrato enfríoado en agua con cada atmosfera
de sinterización en: (a) 100 % CO$_2$, (b) 90 % CO$_2$ - 10% CO, (c) 70 % CO$_2$ - 30 % CO, (d) 50 % CO$_2$
- 50 % CO, (e) 30 % CO$_2$ - 70 % CO, (f) 10 % CO$_2$ - 90 % CO. Todas atacadas con nital al 3%.
Figura 30. Micrografías de las muestras enfríadas en agua sinterizadas en atmosferas de (a) 100 % CO₂, (b) 90 % CO₂ -10 % CO, (c) 70 % CO₂ -30 % CO, (d) 50 % CO₂ -50 % CO, (e) 30 % CO₂ -70 % CO, (f) 10 % CO₂ -90 % CO.

En la figura 29, se observa que las muestras sin importar la atmósfera de sinterización al ser enfríadas en aire quieto, el acero al boro, con un 0.00175 % en peso de boro, del sustrato presenta una microestructura típica de ferrita y perlita, mientras que en la figura 30, se observa que sin importar la
atmosfera de sinterización el acero al boro, con un 0.00175 % en peso de boro, del sustrato al ser enfriado en agua, tiene una microestructura de bainita como se reportó en [24].

El recubrimiento hardfacing fue observado en el microscopio electrónico de barrido sin ataque químico, en ambos medios de enfriamiento, es decir, aire quieto y agua, con el fin de observar si existían diferencias composicionales entre las fases observadas en el microscopio óptico, en las figuras 31-42 se presenta las imágenes de electrones retrodispersados, así como los espectros de energía dispersiva (EDS) realizados a las muestras con las doce condiciones de atmosfera y enfriamiento realizadas, esto es, atmosferas de: 100 % CO₂, 90 % CO₂ -10 % CO, 70 % CO₂ -30 % CO, 50 % CO₂ -50 % CO, 30 % CO₂ -70 % CO y 10 % CO₂ -90 % CO. Y enfriamientos en aire quieto y agua.

Figura 31. Micrografía con electrones retrodispersados y EDS de cuatro zonas diferentes en la muestra sinterizada en atmosfera de 100 % CO₂ y enfriada en aire quieto.
Figura 32. Micrografía con electrones retrodispersados y EDS de dos zonas diferentes en la muestra sinterizada en atmosfera de 100 % CO₂ y enfriada en agua.

Figura 33. Micrografía con electrones retrodispersados y EDS de tres zonas diferentes en la muestra sinterizada en atmosfera de 90 % CO₂ + 10 % CO y enfriada en aire quieto.
Figura 34. Micrografía con electrones retrodispersados y EDS de tres zonas diferentes en la muestra sinterizada en atmosfera de 90% CO$_2$ + 10% CO y enfriada en agua.

Figura 35. Micrografía con electrones retrodispersados y EDS de tres zonas diferentes en la muestra sinterizada en atmosfera de 70% CO$_2$ + 30% CO y enfriada en aire quieto.
Figura 36. Micrografía con electrones retrodispersados y EDS de tres zonas diferentes en la muestra sinterizada en atmosfera de 70 % CO$_2$ + 30 % CO y enfriada en agua.

Figura 37. Micrografía con electrones retrodispersados y EDS de tres zonas diferentes en la muestra sinterizada en atmosfera de 50 % CO$_2$ + 50 % CO y enfriada en aire quieto.
Figura 38. Micrografía con electrones retrodispersados y EDS de tres zonas diferentes en la muestra sinterizada en atmósfera de 50 % CO$_2$ + 50 % CO y enfriada en agua.

Figura 39. Micrografía con electrones retrodispersados y EDS de tres zonas diferentes en la muestra sinterizada en atmósfera de 30 % CO$_2$ + 70 % CO y enfriada en aire quieto.
Figura 40. Micrografía con electrones retrodispersados y EDS de tres zonas diferentes en la muestra sinterizada en atmósfera de 30 % CO₂ + 70 % CO y enfriada en agua.

Figura 41. Micrografía con electrones retrodispersados y EDS de tres zonas diferentes en la muestra sinterizada en atmósfera de 10 % CO₂ + 90 % CO y enfriada en aire quieto.
Figura 42. Micrografía con electrones retrodispersados y EDS de tres zonas diferentes en la muestra sinterizada en atmósfera de 10 % CO₂ + 90 % CO y enfriada en agua.

Con esto se demuestra que no existen variaciones composicionales importantes al variar la atmósfera de sinterización, esto se le atribuye a que las muestras permanecen muy poco tiempo a alta temperatura y no se logra dar la difusión de los elementos de la atmósfera como C, hacia el interior del recubrimiento, existen diferencias entre los medios de enfriamiento, las muestras enfriadas en agua, presentan un mayor contenido de carbono, que las muestras enfriadas en aire, en las fases claras, esto se debe a que al ser enfriadas en agua, no hay tiempo para que exista difusión del carbón, lo que genera la formación de fases metaestables, del tipo M₁₂₉C en las fases claras M₀₉₇C, para las fases obscuras, mientras que al enfriarse en aire, si hay tiempo para la difusión del carbono, consiguiendo así llegar a fases duras estables, las cuales son diferentes carburos. Del tipo M₂₃C₆, para las fases duras y M₃C, para las fases eutécticas. También observamos que los poros están llenos con una fase rica en silicio y oxígeno, lo cual lo podemos atribuir al efecto del fundente, esperamos que en los resultados de difracción de rayos X aparezcan zonas amorfas para corroborar esta afirmación.

En la figura 43, se observan las microestructuras de las muestras sinterizadas en atmósfera de 100 % CO₂ de las diferentes condiciones de enfriamiento con electrones retrodispersados en (a) y
(b) enfriada en aire quieto a 500 y 5000X respectivamente, mientras que en (c) y (d) enfriada en agua a 500 y 5000X respectivamente.

Figura 43. Micrografías de muestras sinterizadas en atmosferas de 100 % CO₂ enfriadas en aire quieto (a) y (b) y enfriadas en agua (c) y (d).

En la figura 44 se observan las microestructuras de las muestras sinterizadas en atmosfera de 90 % CO₂-10 % CO de las diferentes condiciones de enfriamiento con electrones retrodispersados en (a) y (b) enfriada en aire quieto a 500 y 5000X respectivamente, mientras que en (c) y (d) enfriada en agua a 500 y 5000X respectivamente.
Figura 44. Micrografías de muestras sinterizadas en atmosferas de 90 % CO₂-10 % CO enfriadas en aire quieto (a) y (b) y enfriadas en agua (c) y (d).

En la figura 45 se observan las microestructuras de las muestras sinterizadas en atmosfera de 70 % CO₂-30 % CO de las diferentes condiciones de enfriamiento con electrones retrodispersados en (a) y (b) enfriada en aire quieto a 500 y 5000X respectivamente, mientras que en (c) y (d) enfriada en agua a 500 y 5000X respectivamente.
Figura 45. Micrografías de muestras sinterizadas en atmosferas de 70 % CO$_2$-30 % CO enfríadas en aire quieto (a) y (b) y enfríadas en agua (c) y (d).

En la figura 46 se observan las microestructuras de las muestras sinterizadas en atmosfera de 50 % CO$_2$-50 % CO de las diferentes condiciones de enfriamiento con electrones retrodispersados en (a) y (b) enfriada en aire quieto a 500 y 5000X respectivamente, mientras que en (c) y (d) enfriada en agua a 500 y 5000X respectivamente.
Figura 46. Micrografías de muestras sinterizadas en atmosferas de 50 % CO₂-50 % CO enfriadas en aire quieto (a) y (b) y enfriadas en agua (c) y (d).

En la figura 47 se observan las microestructuras de las muestras sinterizadas en atmósfera de 30 % CO₂-70 % CO de las diferentes condiciones de enfriamiento con electrones retrodispersados en (a) y (b) enfriada en aire quieto a 500 y 5000X respectivamente, mientras que en (c) y (d) enfriada en agua a 500 y 5000X respectivamente.
Figura 47. Micrografías de muestras sinterizadas en atmósferas de 30 % CO₂-70 % CO enfriadas en aire quieto (a) y (b) y enfriadas en agua (c) y (d).

En la figura 48, se observan las microestructuras de las muestras sinterizadas en atmósfera de 10 % CO₂-90 % CO de las diferentes condiciones de enfriamiento con electrones retrodispersados en (a) y (b) enfriada en aire quieto a 500 y 5000X respectivamente, mientras que en (c) y (d) enfriada en agua a 500 y 5000X respectivamente.
Figura 48. Micrografías de muestras sinterizadas en atmosferas de 10 % CO₂-90 % CO enfriadas en aire quieto (a) y (b) y enfriadas en agua (c) y (d).

Se observa que, sin importar la atmosfera de sinterización, las microestructuras presentes varían con el medio de enfriamiento, las enfriadas en aire quieto se observan fases duras del tipo M₂₃C₆, rodeadas de una fase eutéctica laminar M₃C como la descrita en [25], sin embargo, esta fase eutéctica laminar, es diferente entre cada atmosfera. Mientras que para las muestras enfriadas en agua su microestructura se compone de fases duras medianas, las cuales son fases metaestables del tipo M₁₂₉C, en las fases claras, las cuales son rodeadas por fases duras más pequeñas en forma de esqueleto del tipo M₀.₉₇C, las cuales varían su morfología, con la variación de la atmosfera de sinterización, como las descritas en [25].

En las figuras 49-60, se presentan las imágenes de la interfase con electrones retrodispersados y las imágenes de los mapeos realizados en las muestras.
Figura 49. Micrografía de electrones dispersados y mapeos de la muestra sinterizada en atmósfera de 100 % CO₂ y enfriada en aire quieto.
Figura 50. Micrografía de electrones dispersados y mapeos de la muestra sinterizada en atmósfera de 100 % CO₂ y enfriada en agua.
Figura 51. Micrografía de electrones dispersados y mapeos de la muestra sinterizada en atmosfera de 90 % CO₂ - 10 % CO y enfriada en aire quieto.
Figura 52. Micrografía de electrones dispersados y mapeos de la muestra sinterizada en atmósfera de 90 % CO₂ - 10 % CO y enfriada en agua.
Figura 53. Micrografía de electrones dispersados y mapeos de la muestra sinterizada en atmosfera de 70 % CO₂ - 30 % CO y enfriada en aire quieto.
Figura 54. Micrografía de electrones dispersados y mapeos de la muestra sinterizada en atmosfera de 70 % CO$_2$ - 30 % CO y enfriada en agua.
Figura 55. Micrografía de electrones dispersados y mapeos de la muestra sinterizada en atmósfera de 50 % CO₂ - 50 % CO y enfriada en aire quieto.
Figura 56. Micrografía de electrones dispersados y mapeos de la muestra sinterizada en atmòsfera de 50 % CO₂ - 50 % CO y enfriada en agua.
Figura 57. Micrografía de electrones dispersados y mapeos de la muestra sinterizada en atmósfera de 30 % CO₂ - 70 % CO y enfriada en aire quieto.
Figura 58. Micrografía de electrones dispersados y mapeos de la muestra sinterizada en atmósfera de 30 % CO₂ - 70 % CO y enfriada en agua.
Figura 59. Micrografía de electrones dispersados y mapeos de la muestra sinterizada en atmósfera de 10 % CO₂ - 90 % CO y enfriada en aire quieto.
Figura 60. Micrografía de electrones dispersados y mapeos de la muestra sinterizada en atmósfera de 10 % CO₂ - 90 % CO y enfriada en agua.
En estas imágenes se observa que no existe separación entre el sustrato y el recubrimiento, lo que indica que hay una buena adherencia entre estos, además con la ayuda de los mapeos elementales, podemos observar que existe una zona en la cual hubo difusión de los elementos del recubrimiento hardfacing, hacia el sustrato, esto se vuelve evidente al observar los mapeos de Cr y Ni, debido a que el sustrato no tiene estos elementos, lo que indica que existe adherencia física y no solo adherencia mecánica entre el recubrimiento y el sustrato.

4.5 Difracción de rayos X.

En la figura 61, se presentan los difractogramas de los polvos metálicos de FeBCCr, como se recibieron del proveedor, así como los difractogramas de las muestras sinterizadas en las diferentes atmósferas, es decir, 100 % CO$_2$, 90 % CO$_2$ – 10 % CO, 70 % CO$_2$ – 30 % CO, 50 % CO$_2$ – 50 % CO, 30 % CO$_2$ – 70 % CO, 10 % CO$_2$ – 90 % CO. Y enfriadas en aire quieto.

Figura 61. Difractogramas de los polvos metálicos de FeBCCr y las muestras sinterizadas en las diferentes atmósferas, enfriadas en aire quieto.

En la figura 62, se presentan los difractogramas de los polvos metálicos de FeBCCr como se recibieron del proveedor, así como los difractogramas de las muestras sinterizadas en las diferentes atmósferas, es decir, 100 % CO$_2$, 90 % CO$_2$ – 10 % CO, 70 % CO$_2$ – 30 %CO, 50 % CO$_2$ – 50 %CO, 30 % CO$_2$ – 70 %CO, 10 % CO$_2$ – 90 %CO. Y enfriadas en agua.
De estos difractogramas podemos determinar que las fases duras obtenidas en los recubrimientos hardfacing fueron boruros y carburos de manganeso, hierro y cromo, lo que coincide con las fases reportadas como: M_7C_3 y $M_{23}C_6$ y MB_2 en [18] [25-26], así como fases metálicas de FeCr y FeCrSi, estas fases, son obtenidas sin importar el medio de enfriamiento, lo que indica que la diferencia que se presenta en propiedades mecánicas, está dada por diferencias en la microestructura, es decir la morfología de estas fases duras.

4.6 Microdureza.

Los resultados de las pruebas de microdureza Vickers, realizadas en las muestras sinterizadas en las distintas atmosferas de sinterización, es decir, 100 % CO$_2$, 90 % CO$_2$ – 10 % CO, 70 % CO$_2$ – 30 % CO, 50 % CO$_2$ – 50 % CO, 30 % CO$_2$ – 70 % CO y 10 % CO$_2$ – 90 % CO, así como enfriadas en los distintos medios, es decir, aire quieto y agua, se presentan en a figura 63.
Figura 63. Resultados de las pruebas de microdureza para las muestras sinterizadas en las diferentes atmosferas de sinterización y enfriadas en los distintos medios de enfriamiento.

En la figura 63, se ve claramente que el sustrato enfriado en aire tiene la menor microdureza, esto debido a su microestructura, formada por ferrita y perlita, mientras que el sustrato de las muestras enfriadas en agua se consigue una microestructura bainítica, lo que se ve reflejado con un aumento en la microdureza. Mientras que, en el recubrimiento, no se observa un patrón definido en el que un medio de enfriamiento supere al otro, se observa que, si tomamos en cuenta las desviaciones estándar presentadas en las barras de error de cada medición, no existen diferencias significativas en la microdureza, en función de la atmosfera de sinterización empleada. Los valores de microdureza en el recubrimiento, coinciden con los reportados en [13] [16] [25] y los valores de microdureza en el sustrato, coinciden con los reportados en [27].

4.7 Nanodureza.

Los resultados de las pruebas de nanodureza, realizadas en las muestras sinterizadas en las distintas atmosferas de sinterización, es decir, 100 % CO₂, 90 % CO₂ – 10 % CO, 70 % CO₂ – 30 %
CO, 50 % CO₂ – 50 % CO, 30 % CO₂ – 70 % CO y 10 % CO₂ – 90 % CO, así como enfriadas en los distintos medios, es decir, aire quieto y agua, se presentan en la figura 64.

![Gráfico de nanodureza](image)

Figura 64. Resultados de las pruebas de microdureza para las muestras sinterizadas en las diferentes atmosferas de sinterización y enfriadas en los distintos medios de enfriamiento.

Se observa que, como en los resultados de microdureza, que debido a la variación de los resultados no es posible dar un patrón entre que medio de enfriamiento tiene una mayor nanodureza, sin embargo, se observa que para ambos medios de enfriamiento la mejor nanodureza se logra sinterizando el recubrimiento hardfacing sinterizado en atmosfera de 50 % CO₂ – 50 % CO. Esto se le atribuye a que la fase eutéctica en esta muestra es la más fina.

4.8 Resistencia al desgaste.

Las pruebas de resistencia al desgaste se hicieron de acuerdo a la norma ASTM G 65, en la cual se pide que el elemento abrasivo sea arena sílica, la cual se presenta en la figura 65, en (a) como se recibió del proveedor y en (b) después de realizar una prueba, se observa que no hay fracturas, en las partículas, tras la realización de la prueba, sin embargo, se observa una disminución en los relieves superficiales de esta, producto de la interacción arena-muestra. La microdureza promedio de las
partículas de arena es de: 1304.96 HV, en la tabla 11, se presentan los valores de microdureza de cada una de las muestras sometidas a desgaste, así como la relación Dureza del abrasivo/Dureza del material a desgastar (Da/Dr), esta relación es importante, ya que de acuerdo a [29] si esta relación se encuentra por debajo de 0.7-1.1, no se producirá desgaste, mientras que para valores mayores a 1.3-1.7 se dará el mayor desgaste. Para valores mayores de 1.9, los mecanismos de desgaste que se presentan son: microarado y microcorte, los que generan microesquirlas del material más blando.

Tabla 11. Relación Da/Dr para las distintas atmosferas de sinterización y medios de enfriamiento.

<table>
<thead>
<tr>
<th>Atmosfera</th>
<th>Arena sílica</th>
<th>Microdureza HV</th>
<th>Da/Dr</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 % CO₂</td>
<td></td>
<td>988.73</td>
<td>1.32</td>
</tr>
<tr>
<td>90 % CO₂ - 10 % CO</td>
<td></td>
<td>845.48</td>
<td>1.54</td>
</tr>
<tr>
<td>70 % CO₂ - 30 % CO</td>
<td>1304.96</td>
<td>1013.75</td>
<td>1.29</td>
</tr>
<tr>
<td>50 % CO₂ - 50 % CO</td>
<td></td>
<td>986.48</td>
<td>1.32</td>
</tr>
<tr>
<td>30 % CO₂ - 70 % CO</td>
<td></td>
<td>1040.53</td>
<td>1.25</td>
</tr>
<tr>
<td>10 % CO₂ - 90 % CO</td>
<td></td>
<td>999.43</td>
<td>1.31</td>
</tr>
</tbody>
</table>

Figura 65. Arena sílica empleada para las pruebas de resistencia al desgaste (a) como se recibió del proveedor, (b) después de una prueba.
En la figura 66 se presentan los resultados de las pruebas de resistencia al desgaste, los cuales se reportan en términos de pérdida de peso. Se observa que la menor pérdida de peso se logra con la atmósfera de 100 % CO₂, con un valor de 0.108 g, se observa una tendencia de cada vez perder más peso con el aumento del contenido de CO en la atmósfera, hasta llegar a un punto máximo con un 50 % CO, con un valor de 0.214 g, esto se le atribuye a que fue la única muestra enfriada en agua que presentó una microestructura con eutéctico laminar, de ahí al incrementar el contenido de CO, vuelve a bajar la pérdida de peso. Todos los valores de pérdida de peso que se reportan tienen mejoras significativas comparándolos con los resultados de pérdida de peso del acero al boro, con un 0.00175 % en peso de boro, utilizado como recubrimiento, el cual con un tratamiento térmico a una temperatura de austenización de 850 °C y por un tiempo de 10 minutos, la cual alcanza una pérdida de peso de 0.78 g [24] [30]. Que es siete veces mayor que la pérdida de peso del recubrimiento hardfacing sinterizado en atmósfera de 100 % CO₂, que pierde 0.108 g.

Figura 66. Pérdida de peso de las muestras tras la prueba de resistencia al desgaste, en las diferentes atmósferas.

Para determinar el mecanismo de desgaste, la literatura utiliza, micrografías tomadas con el microscopio electrónico de barrido, de las marcas dejadas en la pieza, después de someterse a una
prueba de desgaste [29, 31-51], en la figura 67, se presentan las imágenes de las muestras desgastadas en (a) 100 % CO₂, (b) 90 % CO₂ – 10 % CO, (c) 70 % CO₂ – 30 % CO, (d) 50 % CO₂ – 50 % CO, (e) 30 % CO₂ – 70 % CO y (f) 10 % CO₂ – 90 % CO. En estas se muestran las marcas dejadas por las partículas de arena sílica al realizar las pruebas de resistencia al desgaste, las cuales son las típicas líneas alineadas con la rotación de la rueda, [31], en estas imágenes se muestra que se tienen dos mecanismos de desgaste principales, microarados y huecos por desprendimiento de material. Esto de acuerdo a [29, 32, 43, 44].
Figura 67. Imágenes de microscopía electrónica de barrido de las superficies desgastadas de las muestras sinterizadas en: (a) 100 % CO₂, (b) 90 % CO₂ – 10 % CO, (c) 70 % CO₂ – 30 % CO, (d) 50 % CO₂ – 50 % CO, (e) 30 % CO₂ – 70 % CO y (f) 10 % CO₂ – 90 % CO.

5. Conclusiones.

5.1. Pruebas De Secado.
i. A los 10 minutos de iniciar el secado a cualquiera de las temperaturas probadas, es decir, 100, 150 y 200 °C se observa la mayor pérdida de peso.

ii. Los tiempos de secado de la suspensión de polvos metálicos de FeBCCr para las temperaturas de 100, 150 y 200 °C, son: 100, 130 y 80 minutos respectivamente.

iii. Para un secado óptimo de la suspensión de polvos metálicos de FeBCCr sobre el acero al boro, con un 0.00175 % en peso de boro, las condiciones ideales son: 200 °C por un tiempo de 80 minutos.

5.2. Pruebas Dilatométricas.

i. Se encontró que el inicio de la mayor contracción de los polvos metálicos de FeBCCr al realizar las pruebas dilatométricas, se da a una temperatura de 1140 °C, lo que indica que en ese punto se inicia el proceso de sinterización de los polvos metálicos de FeBCCr.

5.3. Microscopia Óptica.

ii. Las muestras sinterizadas y enfriadas en aire quieto, sin importar la atmósfera empleada, tienen una microestructura de, fases duras grandes del tipo M3C3, M6C, MC, M2B y M23B6 rodeadas por un eutéctico laminar, el eutéctico está formado por estas mismas fases duras, acompañadas de un constituyente metálico, este eutéctico laminar tiene diferente morfología para cada atmósfera de sinterización, como las descritas en [25].

iii. Las muestras sinterizadas y enfriadas en agua, sin importar la atmósfera de sinterización empleada, tienen una microestructura de fases duras medianas del tipo M3C3, M6C, MC, M2B y M23B6, rodeadas por un eutéctico en forma de esqueleto de fases duras pequeñas, como la descrita en [25], sin embargo, la morfología de estas es diferente para cada atmósfera de sinterización.

iv. Al aumentar el contenido de CO en la atmósfera de sinterización se pierde la forma esférica de la fase vítrea, hacia formas irregulares, esto tiene un efecto perjudicial para la resistencia al desgaste, debido a que existen puntos concentradores de esfuerzos.

5.4. Microscopia electrónica de barrido.

i. Las muestras enfriadas en agua presentan, una mayor cantidad de carbono, que las muestras enfriadas en aire quieto, esto se atribuye a que no hay tiempo para que el carbono difunda.

ii. Los poros están llenos de una fase rica en Si y O, lo que atribuimos a la presencia de una fase vítrea producto del fundente utilizado.

iii. Se observa la diferencia de los eutécticos que rodean a las fases duras del tipo M3C, en las enfriadas en aire quieto, de forma laminar, presentando diferencias en la forma de las láminas entre cada atmósfera de sinterización y
en las enfriadas en agua en forma de esqueleto, existiendo diferencias en la forma de estas, además de ser de fases metaestables.

iv. Se observa que existe un anclaje físico y no solo mecánico entre el sustrato y el recubrimiento, esto debido a que existe difusión de los elementos del recubrimiento, hacia el sustrato.

v. Los sustratos enfriados en aire quieto, presentan una microestructura de ferrita y perlita, mientras que los sustratos enfriados en agua, presentan una microestructura típica de bainita.

5.5. Difracción de rayos X.

i. Los polvos metálicos de FeBCCr como se recibieron tienen fases diferentes a las que se desarrollan después de la sinterización, teniendo mayor cantidad de fases metálicas, de la forma FeCr, CrFeSi.

ii. Sin importar la atmósfera de sinterización las fases presentes se pueden resumir en: M_2B, M_7C_3, $M_{23}C_6$, donde M puede ser: Fe, Cr o Mn, o cualquier combinación de estos elementos, además de una fase metálica de: FeCr.

5.6. Microdureza.

i. Los sustratos de las muestras enfriadas en aire quieto presentan la menor microdureza debido a su microestructura de ferrita y perlita, con valores en el rango de: 166 a 280 HV.

ii. Los sustratos de las muestras enfriadas en agua, aumentan la microdureza respecto a los enfriados en aire quieto, esto debido a su microestructura en forma de bainita, llegando a valores en el rango de: 534 a 678 HV.

iii. Debido a la gran variación de los valores registrados, no se puede generar una tendencia clara, de la variación de la microdureza con la variación de la atmósfera empleada, sin embargo, se observa un aumento en la microdureza respecto al acero al boro, con un 0.00175 % en peso de boro, del sustrato, teniendo valores que están en el rango de: 865 a 1095 HV.

5.7. Nanodureza.

i. Los sustratos de las muestras enfriadas en aire quieto presentan, los menores valores de nanodureza, debido a su microestructura de perlita y ferrita, presentando valores en el rango de: 5.4 a 8.4 GPa.

ii. Los sustratos de las muestras enfriadas en agua presentan una mejora significativa respecto a los que fueron enfriados en aire quieto, debido a su microestructura de bainita, presentando valores en el rango de: 19.9 a 24.2 GPa.

iii. Debido a la variación de las mediciones no se puede dar una tendencia de que medio de enfriamiento da una mayor nanodureza, debido a que los rangos de error se sobreponen.
iv. Se observa que los valores de nanodureza en el recubrimiento se encuentran en el rango de: 38.8 a 58.8 GPa.

5.8. Resistencia al desgaste.

i. Se encontró que la relación dureza del material abrasivo/dureza del recubrimiento, va de 1.25 a 1.54, lo que nos ubica en valores de desgaste severo.

ii. La muestra sinterizada en atmósfera de: 100 % CO$_2$ presenta la mejor resistencia al desgaste, mientras que la muestra sinterizada en atmósfera de: 50 % CO$_2$ – 50 % CO, presenta la peor resistencia al desgaste, debido a su microestructura.

iii. Se encontró que los mecanismos de desgaste para este recubrimiento son: Microarado y huecos por desprendimiento de material.

6. Recomendaciones y trabajo futuro.

i. Llevar a cabo análisis de EELS, para determinar que fases duras se encuentran presentes en cada zona, así como la identificación de los boruros.

ii. Llevar acabo análisis en microscopía electrónica de transmisión de las zonas donde sufrió desgaste para observar las concentraciones de dislocaciones presentes.

iii. Realizar pruebas reológicas a la suspensión para su aplicación por otros métodos de aplicación.

iv. Realizar pruebas de microdureza y nanodureza con el recubrimiento atacado, para identificar la dureza de cada fase por separado.

v. Realizar pruebas de resistencia al impacto con cada condición, para determinar si existen variaciones significativas en la cantidad de energía absorbida.

vi. Analizar por tomografía con rayos X el porcentaje de porosidad llena de la fase vitrea.

vii. Realizar pruebas de difracción de rayos X, con temperatura, para determinar el mecanismo de sinterización del recubrimiento hardfacing.

viii. Guardar las muestras para evaluar la microestructura después de un periodo largo de tiempo, con el objetivo de determinar si las fases metaestables se mantienen o si evolucionan a fases estables.

7. Referencias bibliográficas.

[7] http://www.xtal.iqfr.csic.es/Cristalografia/parte_05_5.html visitada el 02/05/17

[8] Callister William, Introducción a la ciencia e ingeniería de los materiales, primera edición, editorial reverté, p. 139.

