Índicei
Índice de tablasiv
Índice de figuras iv
RESUMEN ix
I. INTRODUCCION 1
Hipótesis2
Objetivo general2
Objetivo Específicos2
II. Antecedentes
II.1. Anodización
II.1.1. Capas de óxido continuas
II.1.2. Capas de anodizadas porosas6
II.1.3. Aplicaciones
II.2. Nitruros de Metales de Transición12
II.2.1. Propiedades físicas y químicas de nitruros13
II.2.2. Estequiometría
II.2.3. Propiedades eléctricas14
II.2.4. Propiedades mecánicas y químicas17
II.2.5. Nitruro de titanio
II.2.6. Difusión en TiN
II.2.6.1. Difusión del metal en TiN

II.3. Aplicación y Fabricación de recubrimientos Duros a base de Nitrógeno
II.3.1. Aplicación
II.3.2.Técnicas de fabricación de recubrimientos y/o Películas
II.3.2.1. Deposición mediante CVD25
II.3.2.2. Deposición mediante PVD
II.3.3. Nucleación y crecimiento convencional de películas delgadas . 30
II.3.3.1. Modos de crecimiento de películas delgadas 31
II.3.3.2. Morfología de películas Delgadas
II.3.3.3. Crecimiento bajo bombardeo de iones
III. Metodología Experimental
III.1. Diseño y Construcción de la celda electrolítica
III.2. Preparación y anodizado de sustratos
III.3. Deposición de películas delgadas de TiN 46
III.3.1. Condiciones de deposición
III.4. Caracterización de películas delgadas de TiN
III.4.1. Morfología
III.4.2. Análisis fino de composición en las películas de TiN 49
III.4.3. Determinación de dureza
IV. Resultados y Discusión
IV.1. Preparación de sustrato y caracterización mediante

MEB, AFM, y XRD 51
IV.2. Preparación y caracterización de películas TiN mediante EDS y XRD
IV.3. Análisis de composición química con XPS y AES63
IV.4. Caracterización de películas de TiN con AFM 70
IV.5. Determinación de dureza del sistema membrana película 71
IV.6.Determinación de espesor de la membrana72
V. Conclusiones74
VI. Referencias75

ÍNDICE DE TABLAS

Tabla II.2.2.1. Densidad y puntos de fusión de nitruros Intersticiales 16
Tabla II.2.2.2. Propiedades térmicas de nitruros intersticiales
Tabla II.2.2.3. Propiedades eléctricas de nitruros intersticiales a 20 °C17
Tabla II.2.4.1. Propiedades mecánicas de nitruros 18
Tabla II.2.6.1. Difusión de nitrógeno y Argón en TiN
Tabla III.3.1.1. Condiciones de deposición de películas de nitruro de Titanio
Tabla III3.1.2. Condiciones de deposición de películas de nitruro de Titanio

ÍNDICE DE FIGURAS

Figura II.1. Celda electrolítica	3
Figura II.1.1.1. Esquema ilustrativo del transporte de iones a través de la película de óxido	5
Figura II.1.1.2 Vista superior (izquierda) y transversal de una barrera de óxido de aluminio cristalina	6
Figura II.1.2.1. Sección transversal de una capa de óxido a) 3500X y b) 40,000X	7
Figura II.1.2.2. Toma superficial y transversal de una capa de óxido porosa	7
Figura II.1.2.3. Estructura hexagonal ideal de una capa Anodizada	8

Figura II.1.2.4. Sección Transversal de una capa de óxido en la interfase metal/óxido
Figura II.1.3.1. Proceso de fabricación de una estructura de poros con arreglo hexagonal (a) Molde de SiC utilizado para hacer el arreglo de marcas convexas sobre la superficie de aluminio antes de la anodización
Figura II.2.1. Propiedades en el sistema recubrimiento/sustrato, los cuales son importantes en la determinación del desempeño del recubrimiento en aplicaciones tecnológicas
Figura II.2.3.1. Resistividad de un monocristal de TiN 16
Figura II.2.4. 1. Dureza de nitruros intersticiales en función de la relación atómica nitrógeno/metal
Figura II.2.4.2. Dureza de monocristales de TiN y una muestra sinterizada de TiN en función de la relación N/Ti
Figura II.2.4.3. Solubilidad entre nitruros
Figura II.2.5.1. Representación de un cristal fcc típico de TiN
Figura II.2.5.2. Apilamiento ABC-ABC de las estructuras fcc
Figura II.2.5.3. Apilamiento AB-AB de las estructuras hcp
Figura II.3.2.2.1. Principio del proceso de erosión catódica
Figura II.3.2.2.2. Formas de ondas que muestran las combinaciones de polaridad y simetría
Figura II.3.3.1. Proceso de deposición
Figura II.3.3.1 1. Mecanismos de crecimiento
Figura II.3.3.2.1. Modelos de zonas
Figura II.3.3.3.1 Proceso de colisiones
Figura III.1. Diagrama a bloques de la celda electrolítica y la fuente de poder

Figura III.1.1. Vista general de las partes de la celda
Figura III.1.2. Vista exterior e interior del contenedor principal y recipientes de enfriamiento
Figura III.1.3. Celda de anodizado colocada dentro del contenedor principal
Figura III.2.1. Fabricación de membrana porosa: (a) Pulido mecánico y electroquímico de la lamina de Al, (b) 1 ^{er} anodizado en ácido oxálico, (c) Ataque de la capa resultante
Figura III.2.2. Diagrama de flujo de preparación de sustratos 45
Figura III.3.1. Sección transversal de un cañón de erosión catódica utilizado para la deposición de películas de TiN
Figura IV.1.1. Microfotografías de superficie de aluminio tomadas a 1 KX (a) y 3 KX (b), respectivamente
Figura IV.1.2. Superficie de aluminio pulido mecánicamente, 10 KX (a) y 25 KX (b), lámina después de recoserse 70KX (C) 52
Figura IV.1.3. Superficie de aluminio electro pulida tomadas a 500X (a), 10 KX (b), y 70 KX
Figura IV.1.4. Imágenes tomadas con AFM, primera etapa de anodizado
Figura IV.1.5. Imágenes tomadas de un AFM después de disolver la capa de alúmina
Figura IV.1.6. Sustrato de alúmina con diámetros de poros entre 45 a 90 nm, tomadas a: (a) 300 kX y (b) 90 kX
Figura IV.1.7. Segunda anodización a 4, 8, y 12 hrs 56
Figura IV.1.8. Segunda anodización a 16, 20 y 24hr57
Figura IV.1.9. Tendencia de la rugosidad en la superficie de las películas anodizadas

Figura IV.1.10. Variación del espacio entre poros en función del voltaje de anodización
Figura IV.1.11. Patrón de difracción de rayos x del sustrato de alúmina anodizada a 24 horas
Figura IV.2.1. Análisis EDAX por energía dispersiva del recubrimiento de TiN
Figura IV.2.2. Espectro de difracción de rayos X de TiN depositado sobre vidrio y alúmina anodizada
Figura IV.3.1. Espectro completo de análisis de composición química mediante XPS
Figura IV.3.2. Espectros reducidos para orbitales Ti2p, N1s, O1s, de película de TiN sobre sustrato anodizado por 4hr
Figura IV.3.3. Espectros reducidos para orbitales Ti2p, N1s, O1s, de película de TiN sobre sustrato anodizado por 24hr
Figura IV.3.4. Espectros reducidos para orbitales Ti2p, N1s, O1s, de película de TiN sobre sustrato anodizado por 12hr
Figura IV.3.5. Composición química en porcentaje atómico de las películas de TiN
Figura IV.4.1. TiN depositado sobre sustrato poroso (4 hr de anodizado)
Figura IV.4.2. TiN depositado sobre sustrato poroso (8 hr de anodizado)
Figura IV.4.3 TiN depositado sobre sustrato poroso (16 hr de anodizado)
Figura IV.4.4. TiN depositado sobre sustrato poroso (20 hr de anodizado)
Figura IV.4.5. TiN depositado sobre sustrato poroso (24 hr de anodizado)

Figura IV.5.1. Gráfica de dureza para la lámina de 99.99% de pureza	71
Figura IV.5.1. Gráfica de dureza para la lámina de 98 %w de pureza	72
Figura IV.6.1. Corte transversal de la muestra anodizada 4 hrs. Tomada a 2500X, BEI y 15KV	72
Figura IV.6.2. Corte transversal de la muestra anodizada 24 hrs. Tomada a 1500X, BEI y 15KV	73
Figura IV.6.3. Corte transversal de la muestra anodizada 12 hrs Tomada a 11,000X, SEI 15KV	73

RESUMEN

En esta tesis se maneja un método de modificación estructural superficial mediante el anodizado de dos etapas de una placa de aluminio de 99.999% de pureza y una aleación de 98 %W de aluminio y 2 %W de magnesio, los sustratos obtenidos mediante anodizado se caracterizan por ser amorfos, además de tener celdas ordenadas hexagonalmente con un poro central en cada celda, el diámetro del poro esta en el rango de 30 a 90 nm y una distancia entre poros (D_c) de 40 a 70 nm.

Sobre estos sustratos de alúmina se deposito una película de de nitruro de titanio mediante la técnica de erosión catódica reactiva modo continuo, en este trabajo se darán a conocer los efectos del sustrato sobre la forma de crecimiento, morfología y dureza de la película depositada.

Para determinar la composición de estequiométrica de la película delgada de nitruro de titanio se corrieron varias pruebas a diferentes condiciones de deposición, las películas se analizaron con espectroscopia foto electrónica de rayos X y difracción de rayos x, de esta manera se determinó que a una presión de trabajo de 2.6x10-3 Torr, con flujo de argón de 16 cm3/min, flujo de nitrógeno de 1.7 cm3/min; temperatura del sustrato a 300 °C y potencia de 200W, se obtiene una composición cercana al estequiométrica y una marcada orientación hacia los planos (111). De acuerdo a las características del sustrato el área superficial disponible para difundir de los átomos adsorbidos es muy limitada, esta área se compone de las paredes de los poros o la distancia entre poros la cual es de 40 a 70 nm, este efecto aunado al alto bombardeo de iones de la técnica de deposición de erosión reactiva induce a la orientación hacia los planos (111) de la película depositada, además promueve el crecimiento de islas separadas por hueco, estas islas tienen una base bastante amplia que la parte superior que termina en punta cuyo tamaño es de algunos nanómetros. De acuerdo al análisis de dureza, la mejor condición para utilizar las membranas como sustratos para la deposición de películas de alta dureza es la muestra con 12 horas de anodizado y una composición de 99.999% de pureza.

х