

Centro de Investigación en Materiales Avanzados, S.C.

SYNTHESIS OF Batio₃ NANOFIBERS **BY ELECTRO-SPINNING**

ABSTRACT

M.C. Maldonado-Orozco^{1,*}, J.E. Sosa-Márquez¹, M.T. Ochoa-Lara¹ and F. Espinosa-Magaña¹

Titanate nanofibers were synthesized Barium by the electrospinning method, this process represents a convenient method for preparing polymer fibers and ceramic fibers[1].

The as-spun and morphology, microstructure and crystal structure of calcined composite nanofibers were characterized by Thermogravimetric Analysis (TGA), differential scanning calorimetry (DSC), scanning electron microscopy (SEM), X-Ray Diffractometry (XRD) and Transmission Electron Microscopy (TEM). The nanofibers were synthesized and the particular size was between 90 and 180 nm.

INTRODUCTION

Ferroelectric materials can be defined as materials that show net spontaneous polarization, this can be used to form digital signals such 1 and 0 and they are the basis of memory and logic circuits. [3]

CONCLUSIONS

Vanofibers	have	been
successfully	prepared	by

EXPERIMEN

Barium acetate was dissolved in acetic acid and stirred for 2 h, then titanium isopropoxide was added drop by drop. The solution mixed with was (PVP) polyvinylpyrrolidone and ethanol.

TGA shows that 650 °C is a suitable temperature for calcination of the asspun fibers.

SEM images of polymeric fibers.

electrospinning process, followed by calcination at 750 °C for 2 h and 850° C for 1 h show a length of few µm, formed by irregular shaped nanoparticles with size between 90 and 180 nm.

BaTiO3 necklace-like structures, 850° C for 1 h (TEM)

metallic needle The was connected to a high-voltage power supply of 15 kV and a constant flow rate of 0.3 mL/h was used.

A grounded aluminum foil was placed 13 cm from the needle tip. [2]

As confirmed by XRD analysis, from 650 °C to 850 °C, the phase of BaTiO₃ has been reached.

REFERENCES

[1] S. Maensiri, W Nuansing, J Klinkaewnarong, P. Laokul, J. Khemprasit, Journal of Colloid and Interface Science 297 (2006) 578-583.

[2] Duque Sánchez, L. M., Rodriguez, L., & López, M. (Iberoamericana de Polímeros, 2013). 10-27.

[3] Yuh, J., Nino, J. C., & Sigmund, W. M. (2005). Syntesis of barium titanate (BaTiO3) nanofibers via electrospinning. materials letters, 3645-3647.

Acknowledgements

Technical support of Carlos Ornelas, Wilber Antúnez, Ernesto Guerrero and Daniel Lardizábal is greatly appreciated. One of the authors (M.C. Maldonado-Orozco) gratefully acknowledges the support grant from CONACYT, México.

BaTiO3 necklace-like structures, 800° C for 2 h (TEM)

¹Centro de Investigación de Materiales Avanzados, S.C., Laboratorio Nacional de Nanotecnología. Miguel de Cervantes 120, Complejo Industrial, Chihuahua, Chih, México 31136