MODIFICACIÓN DE LA MAGNETIZACIÓN EN PELÍCULAS DELGADAS DE

t-Mn₃Ga

R. M. Gutiérrez-Pérez¹, J. T. Holguín-Momaca¹, J. T. Elizalde Galindo², J. A. Matutes-Aquino¹, C. R. Santillán-Rodríguez¹, Karol Zaleski³, S. F. Olive-Méndez¹.

²Universidad Autónoma de Ciudad Juárez, Av. Del Charro 450 norte, 32310 Ciudad Juárez, México.

³NanoBioMedical Centre (Poznan, **Poland**).

RESUMEN

Se sintetizaron películas de t-Mn₃Ga y t-Mn₃Ga:C sobre diferentes sustratos, utilizando la técnica de erosión catódica (sputtering), con el fin de modificar sus propiedades magnéticas mediante la inducción de esfuerzos en la red cristalina del Mn₃Ga. La película de Si(001)/SiO₂/Mn₃Ga de 2 nm de espesor presentó una magnetización de saturación (Ms) fuera del plano de 1690 emu/cm³, lo cual corresponde a 15 veces el valor de magnetización del material en bulto. Por otro lado, al dopar el material con C se observó que conforme se incrementa el % molar de C, la anisotropía magnética de la película cambia de perpendicular a paralela, llegando a un límite de 36 %mol. de C antes de que se presente un cambio de fase. Por último, la película de Mn₃Ga crecida sobre la capa buffer de Cr presenta una deformación de 0.5% en la red cristalina, lo cual incrementó la Ms a un valor de 150 emu/cm³, comparado con el material en bulto que tiene una magnetización de 110 emu/cm³.

INTRODUCCIÓN

Actualmente se están desarrollando las memorias RAM magnéticas (MRAM), las cuales prometen:

- Reducir el consumo de energía
- Rápida lectura y escritura

cimav

- Alta densidad de integración
- No volátiles.

Las memorias magnéticas de torsión por transferencia de spin (STT-MRAM) que se basan en la unión túnel magnética (UTM), son las más prometedoras para cumplir estas expectativas.

METODOLOGÍA

La síntesis de las películas delgadas se realizó mediante la técnica de erosión catódica (rf magnetrón sputtering).

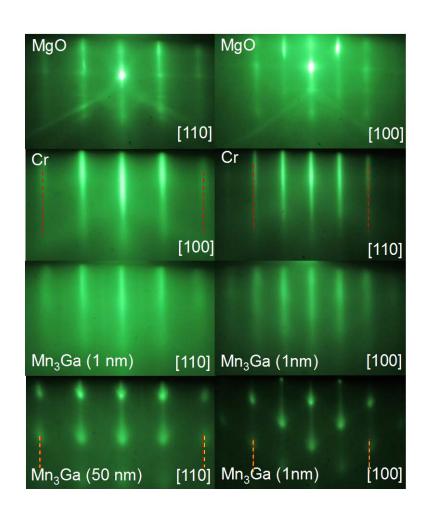
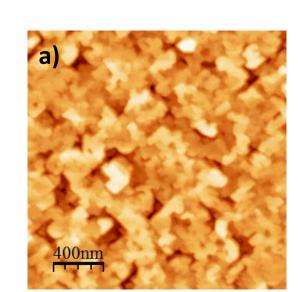
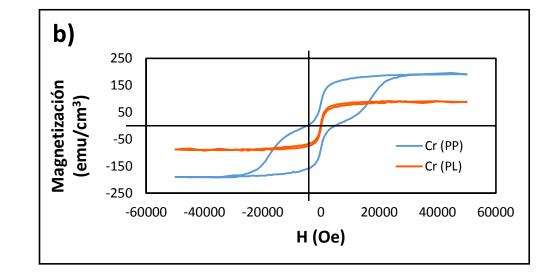


Figura 2. Equipo sputtering


Película buffer	∆ a (%)	ε (%)
Cr	-4.09	0.5;0.5
Мо	1.97	-1.66;-1.81
Cu	7.41	0;0


$$\Delta a = \frac{a_{bulk} - asust_{rato}}{a_{bulk}} \times 100$$

$$\varepsilon = \frac{a_{pelicula} - abulk}{x \cdot 100}$$

Figura 5. Izq.) Desacuerdo en el parámetro de red y deformación en la película debido a la capa buffer. **Der.)** Patrones de difracción RHEED: sustrato (MgO), capa buffer (Cr) y película de Mn₃Ga.

Figura 6. a) Micrografía de AFM de las película de Mn₃Ga depositada a 320 °C sobre Cr. **b)** Curvas de magnetización M(H) medidas en el plano (PL) y fuera del plano (PP).

Proyecto financiado por: FOMIX CHIH-2011-C03-168831 y ARL-AFOSR W911NF-13-1-0177

Un candidato muy importante para utilizarse en la elaboración de este tipo de memorias es el Mn_3 Ga en su fase tetragonal, el cual es un material ferrimagnético que tiene propiedades magnéticas excepcionales, tales como baja magnetización (110 emu/cm³), alta anisotropía magnetocristalina (K_u =0.89MJm⁻³), alta polarización de spin (58%) y alta temperatura de Curie (770 K).

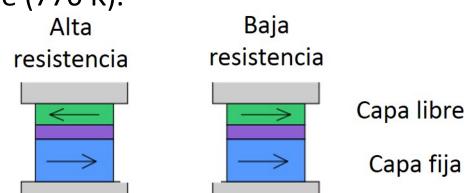
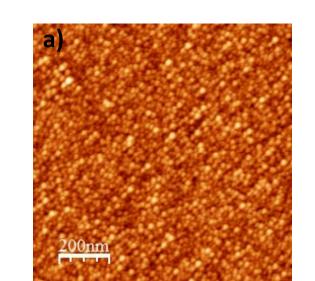



Figura 1. Unión túnel magnética (UTM)

RESULTADOS

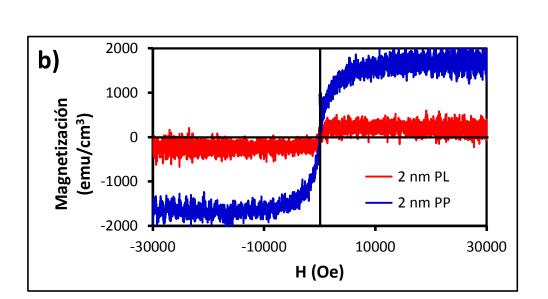
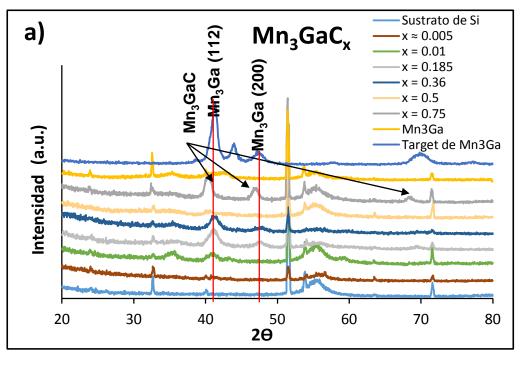
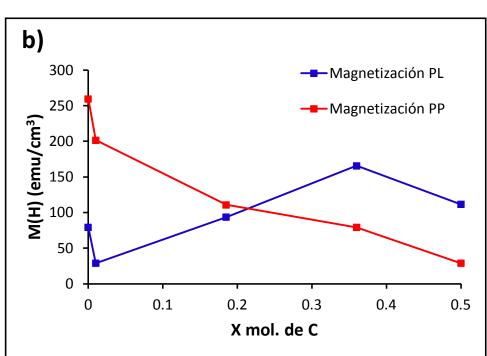




Figura 3. Película de Si(001)/ SiO₂/Mn₃Ga de 2nm sintetizada a 300ºC.

a) Micrografía de AFM y b) Curvas de magnetización M(H) medidas en el plano (PL) y fuera del plano (PP).

Figura 4. a) Difracción de rayos X de películas de Si(001)/SiO2/Mn3GaCx de 10nm de espesor sintetizadas a 350°C. **b)** Dependencia de la magnetización con respecto a la fracción molar de C en la muestra.

CONCLUSIONES

- El dopaje del Mn₃Ga con C (36% mol.) modifica la orientación de la anisotropía magnetocristalina de perpendicular a paralela al plano de la muestra.
- Una película policristalina y ultra delgada de Mn₃Ga exhibe una Ms gigante de 1690 emu/cm³, atribuida a la descompensación de spin en las fronteras de grano.
- La capa buffer de Cr induce una deformación en la red monocristalina del Mn₃Ga, incrementando las distancias interatómicas Mn-Mn, y con esto la Ms del material.

REFERENCIAS

- H. Kurt, K. Rode, M. Venkatesan, P. Stamenov, J.M.D.Coey. High spin polarization in epitaxial films of ferrimegnetic Mn₃Ga. Physical Review B. 83, 020405 (2011).
- J. Winterlik, B. Balke, G. H. Fecher, C. Felser, M. C. M. Alves, F. Bernardi, and J. Morais, Phys. Rev. B. 77, 054406 (2008).
- R.M. Gutiérrez-Pérez, J.T. Holguín-Momaca, J.T. Elizalde-Galindo, F. Espinosa-Magaña, S.F. Olive-Méndez. Giant magnetization on Mn_3Ga ultra-thin films grown by magnetron sputtering on $SiO_2/Si(001)$. Journal of Applied Physics. 117, 123702 (2015).