Por favor, use este identificador para citar o enlazar este ítem: http://cimav.repositorioinstitucional.mx/jspui/handle/1004/1875
New Trends on the Synthesis of Inorganic Nanoparticles Using Microemulsions as Confined Reaction Media
MARGARITA SANCHEZ DOMINGUEZ
Acceso Abierto
Sin Derechos Reservados
INORGANIC NANOPARTICLES
The development of nanotechnology depends strongly on the advances in nanoparticle preparation. Nowadays, there are a number of technologies available for nanoparticle synthesis, from the gas phase techniques such as laser evaporation (Gaertner & Lydtin, 1994), sputtering, laser pyrolisis, flame atomization and flame spray pyrolisis (Kruis et al. 1998), etc, to the liquid phase techniques such as coprecipitation from homogeneous solutions and sol-gel reactions (Qiao et al. 2011), solvothermal processes (Gautam et al. 2002), sonochemical and cavitation processing (Suslick et al. 1996), and surfactant and polymer-templated synthesis (Holmberg, 2004). Amongst the surfactant-based approaches, the microemulsion reaction method is one of the most used techniques for the preparation of very small and nearly monodispersed nanoparticles. This method offers a series of advantages with respect to other methods, namely, the use of simple equipment, the possibility to prepare a great variety of materials with a high degree of particle size and composition control, the formation of nanoparticles with often crystalline structure and high specific surface area, and the use of soft conditions of synthesis, near ambient temperature and pressure. The traditional method is based on water-in-oil microemulsions (W/O), and it has been used for the preparation of metallic and other inorganic nanoparticles since the beginning of the 1980’s (Boutonnet et al., 1982). The droplets of W/O microemulsions are conceived as tiny compartments or “nanoreactors”. The main strategy for the synthesis of nanoparticles in W/O microemulsions consists in mixing two microemulsions, one containing the metallic precursor and another one the precipitating agent. Upon mixing, both reactants will contact each other due to droplets collisions and coalescence, and they will react to form precipitates of nanometric size (Figure 1).
2012-04
Capítulo de libro
Inglés
ECONOMÍA QUÍMICA
Versión revisada
submittedVersion - Versión revisada
Aparece en las colecciones: Libros

Cargar archivos: